3 Understanding Linear Regression

This chapter is a reminder about the basic regression model functions in R.

Here a warm-up exercise: Fit the regression:

summary(lm(Ozone ~ Wind, data = airquality))

And answer / discuss with your partner the following questions: What is the effect of Wind on Ozone? How important is Wind to explain Ozone? Next, run the following regressions:

summary(lm(Ozone ~ Wind + Temp, data = airquality))
summary(lm(Ozone ~ Wind * Temp, data = airquality))

Why does the effect of Wind on Ozone change so much as we change the formula? What is the “true” or correct estimate of the effect of Wind on Ozone? At the end of this chapter, you should be able to answer all these questions!

3.1 Simple Linear Regression

OK, after our warm-up, let’s start with the basics. We will again used the data set airquality, which is built-in in R. If you don’t know the data set, have a look at the description via

?airquality

and at the variables via

str(airquality)

To get started, let’s say we want to examine the relationship between Ozone and Wind. Let’s visualize this first:

plot(Ozone ~ Wind, data = airquality)

OK, I would say there is some dependency there. To quantify this numerically, you could also run

cor(airquality$Ozone, airquality$Wind, use = "complete.obs")

to get the (Pearson) correlation, which is negative: -0.6015465.

What we want to do now is fitting regression models through the data with the lm() function of R. The function name lm is short for “linear model”. However, remember from the basic course: This model is not called linear because we necessarily fit a linear function. It’s called linear because we express the response (in our case Wind) as a polynomial of the predictor(s). That means, the predictors have linear coefficients but they might themselves be for example quadratic or sinus terms. So \(y = \operatorname{f}(x) + \mathcal{N}(0, \sigma)\), where \(\operatorname{f}\) is a polynomial, e.g. \({a}_{0} + {a}_{1} \cdot x + {a}_{2} \cdot {x}^{2}\), and \(\mathcal{N}(0, \sigma)\) means that we assume the data scattering as a normal (Gaussian) distribution with unknown standard deviation \(\sigma\) around \(\operatorname{f}(x)\). The model is called linear because when estimating the unknown parameters (we call them “effects”) of the polynomial, we will see that they are all affecting the predictions linearly, and can thus be solved as a system of linear equations.

3.1.1 Fitting and Interpreting the Regression

For fitting a line through this data, we have 3 options:

  1. Fit a horizontal line (intercept only).
  2. Fit only the slope, but assume the line goes through the origin (0, 0).
  3. Fit slope and intercept.

Option 3 is the most common case, but we will discuss all 3 options here.

Intercept Only Model

The following code fits an intercept only model, meaning that we assume the line is perfectly flat, and we only adjust it’s height (the intercept).

fit = lm(Ozone ~ 1, data = airquality)

We can visualize the result via

plot(Ozone ~ Wind, data = airquality)
abline(fit)

and get a summary of the fitted regression coefficients via

summary(fit)
## 
## Call:
## lm(formula = Ozone ~ 1, data = airquality)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -41.13 -24.13 -10.63  21.12 125.87 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   42.129      3.063   13.76   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.99 on 115 degrees of freedom
##   (37 observations deleted due to missingness)

We will talk more about this summary later, but for the moment, let’s look only at the coefficients.

This tells us that

  • We estimate the mean Ozone (our line) to be at \(42.12 \pm 3.1\) units.
  • The value is significantly different from zero (the t-test always tests \({H}_{0}\): “The estimate is zero”).

By the way, the value for the intercept is identical to mean(airquality$Ozone, na.rm = T). This is no accident, as the mean is the maximum likelihood estimation for the mean of the normal distribution.

Slope Only Model

Although rarely sensible, you can also fit a model with just a slope. This only makes sense if you are sure that the line must go through the origin (0, 0) for physical or biological reasons.

fit = lm(Ozone ~ Wind + 0, data = airquality)
summary(fit)

# Alternative for removing the linear term:
fit = lm(Ozone ~ Wind - 1, data = airquality)
summary(fit)

In the results, you can see that we estimate a positive slope, in contradiction to our visual assessment that the data seems negatively correlated. This is because we are forcing the regression line to go through the origin (0, 0).

## 
## Call:
## lm(formula = Ozone ~ Wind - 1, data = airquality)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -55.11 -19.34  -2.45  35.71 157.32 
## 
## Coefficients:
##      Estimate Std. Error t value Pr(>|t|)    
## Wind   3.1398     0.3742   8.391  1.4e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 42.25 on 115 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.3798, Adjusted R-squared:  0.3744 
## F-statistic: 70.41 on 1 and 115 DF,  p-value: 1.404e-13
plot(Ozone ~ Wind, data = airquality)
abline(fit)

Slope and Intercept

The most common case will be a model with slope and intercept which is probably corresponds most with our visual assessment.

fit = lm(Ozone ~ Wind, data = airquality)
plot(Ozone ~ Wind, data = airquality)
abline(fit)

summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Wind, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.572 -18.854  -4.868  15.234  90.000 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  96.8729     7.2387   13.38  < 2e-16 ***
## Wind         -5.5509     0.6904   -8.04 9.27e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.47 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.3619, Adjusted R-squared:  0.3563 
## F-statistic: 64.64 on 1 and 114 DF,  p-value: 9.272e-13

This time, we want to look in full at the regression table. Recall that:

  • Call” repeats the regression formula.
  • Residuals” gives you an indication about how far the observed data scatters around the fitted regression line / function.
  • The regression table (starting with “Coefficients”) provides the estimated parameters, one row for each fitted parameter. The first column is the estimate, the second (standard error) is the 0.63 confidence interval (for 0.95 confidence interval multiply with 1.96), and the fourth column is the p-value for a two-sided test with \({H}_{0}\): “Estimate is zero”. The t-value is used for calculation of the p-value and can usually be ignored.
  • The last section of the summary provides information about the model fit.
    • Residual error = Standard deviation of the residuals,
    • 114 df = Degrees of freedom = Observed - fitted parameters.
    • R-squared \(\left({R}^{2}\right)\) = How much of the signal, respective variance is explained by the model, calculated by \(\displaystyle 1 - \frac{\text{residual variance}}{\text{total variance}}\).
    • Adjusted R-squared = Adjusted for model complexity.
    • F-test = Test against intercept only model, i.e. is the fitted model significantly better than the intercept only model (most relevant for models with > 1 predictor).

Discussion

What is the meaning of “An effect is not significant”?

Solution

You should NOT say that the effect is zero, or that the null hypothesis has been accepted. Official language is “there is no significant evidence for an effect(p = XXX)”. If we would like to assess what that means, some people do a post-hoc power analysis (which effect size could have been estimated), but better is typically just to discuss the confidence interval, i.e. look at the confidence interval and say: if there is an effect, we are relatively certain that it is smaller than X, given the confidence interval of XYZ.



Discussion

Is an effect with three *** more significant / certain than an effect with one *?

Solution

Many people view it that way, and some even write “highly significant” for *** . It is probably true that we should have a slightly higher confidence in a very small p-value, but strictly speaking, however, there is only significant, or not significant. Interpreting the p-value as a measure of certainty is a slight misinterpretation. Again, if we want to say how certain we are about the effect, it is better to look again at the confidence interval, i.e. the standard error and use this to discuss the precision of the estimate (small confidence interval / standard error = high precision / certainty).



Task

Fit simple (univariate) linear regression models for the other two numeric variables (Temp and Solar.R) and interpret the results with your partner.

Solution

fit = lm(Ozone ~ Temp, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Temp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.9955    18.2872  -8.038 9.37e-13 ***
## Temp           2.4287     0.2331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
plot(Ozone ~ Temp, data = airquality)
abline(fit)

Temperature seems to have a positive effect of Ozone and this effect is significant. The intercept (value for Ozone at Temp = 0) is negative and also significant. This model explains nearly 50% of the variance of the given data. This holds even for the complexity adjusted \({R}^{2}\) measure. 37 observations have missing data and are omitted. Compared to the model with only an intercept, this model is significantly different.




fit = lm(Ozone ~ Solar.R, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Solar.R, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.292 -21.361  -8.864  16.373 119.136 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.59873    6.74790   2.756 0.006856 ** 
## Solar.R      0.12717    0.03278   3.880 0.000179 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.33 on 109 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.1213, Adjusted R-squared:  0.1133 
## F-statistic: 15.05 on 1 and 109 DF,  p-value: 0.0001793
plot(Ozone ~ Solar.R, data = airquality)
abline(fit)

Solar.R seems to have a positive effect of Ozone and this effect is significant. The intercept (value for Ozone at Solar.R = 0) is positive and also significant. This model explains slightly more than 10% of the variance of the given data. This holds even for the complexity adjusted \({R}^{2}\) measure. 42 observations have missing data and are omitted. Thus this model has not the power of the previous one. Compared to the model with only an intercept, this model is significantly different.



3.1.2 Centering and Scaling of Predictors

In the last model

fit = lm(Ozone ~ Wind, data = airquality)
summary(fit)

we saw an intercept of 96 for the Wind parameter. Per definition, the intercept is the predicted value for \(y\) (Ozone) at \(x\) (Wind) = 0. It’s fine to report this, as long as we are interested in this value. However, there are certain situations where the value at predictor = 0 is not particularly interesting. Let’s look at the regression for Temp, for example:

fit = lm(Ozone ~ Temp, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Temp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.9955    18.2872  -8.038 9.37e-13 ***
## Temp           2.4287     0.2331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16

Here, the intercept is -146, which doesn’t make much sense for an ozone concentration, which should be positive. We can see the reason when we plot the results:

plot(Ozone ~ Temp, data = airquality, xlim = c(-10, 110), ylim = c(-200, 170))
abline(fit)
abline(h = 0, lty = 2)
abline(v = 0, lty = 2)

That shows us that the value 0 is far outside of the set of our observed values for Temp, which is measured in Fahrenheit. Thus, we are extrapolating the Ozone far beyond the observed data. What we can do to avoid this is to simply re-define the x-Axis, by subtracting the mean, which is called centering:

airquality$cTemp = airquality$Temp - mean(airquality$Temp)

Alternatively, you can center with the build-in R command scale

airquality$cTemp = scale(airquality$Temp, center = T, scale = F)

Fitting the model with the centered variable

fit = lm(Ozone ~ cTemp, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ cTemp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  42.1576     2.2018   19.15   <2e-16 ***
## cTemp         2.4287     0.2331   10.42   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16

produces a more interpretable value for the intercept. We can see this also visual if we plot the results, i.e. the Ozone concentration at the mean observed temperature.

plot(Ozone ~ cTemp, data = airquality)
abline(fit)
abline(v = 0, lty = 2)

When we center, the intercept of the centered variable can be interpreted as the Ozone concentrate at the mean temperature. This value will also typically be very similar to the grand mean mean(airquality$Ozone).

Another very common transformation is to divide the x axis by its standard deviation. This is called scaling.

airquality$sTemp = airquality$Temp / sd(airquality$Temp)

Fitting the model with the scaled variable mainly changes the estimate of the regression slope

fit = lm(Ozone ~ sTemp, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ sTemp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.995     18.287  -8.038 9.37e-13 ***
## sTemp         22.988      2.207  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16

which is now around 23 (before it was 2.4). The difference in interpretation is the following: for the unscaled variable, we estimate the effect of 1 unit change of temperature on Ozone. For the scaled variable, we estimate the effect of a temperature change of 1 sd of the temperature values, so we can interpret this as an Ozone effect scaled to typical temperature differences in the data.


Task

Have a look at the results below, where we apply linear transformations on a variable (linear = either subtract / add something to the variable, or multiply / divide the variable by a certain value). How does the transformation change the regression’s estimates?

Solution

Original model

fit = lm(Ozone ~ Temp, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Temp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.9955    18.2872  -8.038 9.37e-13 ***
## Temp           2.4287     0.2331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
plot(Ozone ~ Temp, data = airquality, main = "Standard")
abline(fit)

Additive transformation change the intercept value, all p-values, CIs stay the same (except for the intercept, as the test changes)

airquality$TempAdd = airquality$Temp + 10
fit = lm(Ozone ~ TempAdd, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ TempAdd, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -171.2825    20.6034  -8.313 2.22e-13 ***
## TempAdd        2.4287     0.2331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
plot(Ozone ~ TempAdd, data = airquality, main = "Addition + 10")
abline(fit)

Multiplicative transformations change the slope value, p-values and relative CIs for intercept and slope stay the same.

airquality$TempMult = airquality$Temp * 10
fit = lm(Ozone ~ TempMult, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ TempMult, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.99549   18.28717  -8.038 9.37e-13 ***
## TempMult       0.24287    0.02331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
plot(Ozone ~ TempMult, data = airquality, main = "Multiplication * 10")
abline(fit)

Combinations of both have both effects together

airquality$TempMix = airquality$Temp * 0.1 - 10
fit = lm(Ozone ~ TempMix, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ TempMix, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   95.875      5.609   17.09   <2e-16 ***
## TempMix       24.287      2.331   10.42   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
plot(Ozone ~ TempMix, data = airquality, main = "Mixed")
abline(fit)



Pro Task

Look at the centered and uncentered regression models

fit1 = lm(Ozone ~ Temp, data = airquality)
summary(fit1)
## 
## Call:
## lm(formula = Ozone ~ Temp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -146.9955    18.2872  -8.038 9.37e-13 ***
## Temp           2.4287     0.2331  10.418  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16
fit2 = lm(Ozone ~ cTemp, data = airquality)
summary(fit2)
## 
## Call:
## lm(formula = Ozone ~ cTemp, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.729 -17.409  -0.587  11.306 118.271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  42.1576     2.2018   19.15   <2e-16 ***
## cTemp         2.4287     0.2331   10.42   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.71 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4832 
## F-statistic: 108.5 on 1 and 114 DF,  p-value: < 2.2e-16

Why do the confidence intervals (Std. Error) on the intercept in the two models (centered and uncentered) differ? To get an idea, look at the effect plots (library effects) for the model. You can also run compare vcov(fit) (calculates variance-covariance matrix) for both models.

Solution

library(effects)

preList = list(Temp = seq(-10, 110, 1))
plot(effect("Temp", fit1,  xlevels = preList), main = "Standard")

preList = list(cTemp = seq(-10, 110, 1))
plot(effect("cTemp", fit2,  xlevels = preList), main = "Centered")

vcov(fit1)
##             (Intercept)        Temp
## (Intercept)  334.420718 -4.23230774
## Temp          -4.232308  0.05435046
vcov(fit2)
##             (Intercept)       cTemp
## (Intercept) 4.848002921 0.000633905
## cTemp       0.000633905 0.054350459


Solution: both centered and uncentered inherently fit the same model, but uncertainty of the intercept for the uncentered model is higher, because this is wide outside the data area, thus we are extrapolating.


Task

3.1.3 Residual Checks

So far, we fitted a regression model, but we didn’t check if the model assumptions fit to the data. Actually, in quite a few examples above we actually saw quite bad fits. For example, let’s take the slope only model lm(Ozone ~ Wind - 1, data = airquality), where we assumed that the regression line should go through (0, 0). Maybe we have good reasons to think that this should be the case biologically, but our data seem to suggest a different behavior.

Wht about the slope and intercept model? Also here, if we plot the predicitons, it seems the model systematically underpredicts Ozone for low Wind, and overpredicts for high Wind.

fit = lm(Ozone ~ cTemp, data = airquality)
plot(Ozone ~ cTemp, data = airquality)
abline(fit)

We can see this a bit better if we use the effects.{R} package, which we will use from now on for doing result plots for regression models.

library(effects)
plot(allEffects(fit, partial.residuals = T))
## Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
## predictor cTemp is a one-column matrix that was converted to a vector

Here, the blue line is the fitted model (with confidence interval in light blue), purple circles are the data, and the purple line is a nonparametric fit to the data. What we see highlighted here is that the data seems to follow a completely different curve than the fitted model.

The conclusion here would be: The model we are fitting does not fit to the data, we should not interpret its outputs, but rather say that we reject it, it’s the wrong model, we have to search for a more appropriate description of the data.

Let’s look at the same plot for the following model:

fit = lm(Ozone ~ Wind + Temp, data = airquality)
plot(allEffects(fit, partial.residuals = T))

This looks already better, but there seems to be still a bit of a pattern regarding the scattering of the observed data around the regression line. We can get the difference between model and observations via residuals(fit), and we could plot them against the model predictions (which can be obtained via the predict function) via

plot(residuals(fit) ~ predict(fit))
abline(h = 0)

Remember: The model assumes that the data scatters with a homogenous normal distribution around the regression predictions (which is the 0 line here). What seems to happen, however, is that the scatter increases towards higher predictions, and there also seems to be a tendency towards underprediction at the high and low end.

To better analyse these residuals (and potential problems), R offers a function for residual plots. It produces 4 plots. I think it’s most convenient plotting them all into one figure, via

par(mfrow = c(2, 2))

which produces a figure with 2 x 2 = 4 panels.

par(mfrow = c(2, 2))
plot(fit)

Interpretation:

  • Residuals vs Fitted: Shows misfits and wrong functional form. Scattering should be uniformly distributed.
  • Normal Q-Q: Checks if residuals follow an overall normal distribution. Bullets should lie on the line in the middle of the plot and may scatter a little bit at the ends.
  • Scale - Location: Checks for heteroskedasticity. Does the variance change with predictions/changing values? Scattering should be uniformly distributed.
  • Residuals vs Leverage: How much impact do outliers have on the regression? Data points with high leverage should not have high residuals and vice versa. Bad points lie in the upper right or in the lower right corner. This is measured via the Cook’s distance. Distances higher than 0.5 indicate candidates for relevant outliers or strange effects.

Important: Residuals are always getting better for more complex models. They should therefore NOT solely be used for model selection. Select your model structure in a different way, residual checks are just for doing a final check to see if the fitted model makes sense.

Generally: If you want to do model selection, control for model complexity. The more complex the model, the higher the cost related to the increase of accuracy.


Task

Modify the formula to get (as far as possible) an acceptable fit to the data. Consider the following options:

fit = lm(Ozone ~ Wind, data = airquality) # Intercept + slope.
fit = lm(Ozone ~ 1, data = airquality) # Only intercept.
fit = lm(Ozone ~ Wind - 1 , data = airquality) # Only slope.
fit = lm(Ozone ~ log(Wind), data = airquality) # Predictor variables can be transformed.
fit = lm(Ozone^0.5 ~ Wind, data = airquality) # Output variables can also be transformed.
fit = lm(Ozone ~ Wind + I(Wind^2), data = airquality) # Mathematical functions with I() command.

library(MASS)
fit = lm(Ozone ~ Wind, data = airquality)
# Calculates optimal transformation for Ozone^lambda to achieve residuals as normally distributed as possible.
boxcox(fit)

Annotation: In the picture above, you can see, that the 95% confidence interval of the best \(\lambda\) lies approximately in \([0.15, 0.5]\).

Solution

Possible solution, adding a quadratic predictor and chosing a power of 0.35 transformation based on the boxcox function:

fit1 = lm(Ozone^0.35 ~ Wind + I(Wind^2), data = airquality)
plot(allEffects(fit1, partial.residuals = T), selection = 1)

You could get even better fit by adding more and more predictors, as we will discuss on the section on model selection, this model probably overfits:

fit2 = lm(Ozone^0.35 ~ Wind + I(Wind^2) + I(Wind^3) + I(Wind^4) + I(Wind^5) +
           I(Wind^6) + I(Wind^7) + I(Wind^8), data = airquality)
plot(allEffects(fit2, partial.residuals = T), selection = 1)

We can see this by looking at common model selection indicators (again, more in the section on model selection). AIC comparison (lower = better)

AIC(fit1)
## [1] 270.2059
AIC(fit2) 
## [1] 274.7512

Likelihood ratio test (is there evidence for the more complex model?)

anova(fit1, fit2)
## Analysis of Variance Table
## 
## Model 1: Ozone^0.35 ~ Wind + I(Wind^2)
## Model 2: Ozone^0.35 ~ Wind + I(Wind^2) + I(Wind^3) + I(Wind^4) + I(Wind^5) + 
##     I(Wind^6) + I(Wind^7) + I(Wind^8)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    113 65.112                           
## 2    107 61.059  6    4.0528 1.1837 0.3205



3.1.4 Categorical Predictors

The lm() function can handle both numerical and categorical variables. To understand what happens if the predictor is categorical, we’ll use another data set here, PlantGrowth (type ?PlantGrowth or F1 help if you want details). We visualize the data via:

boxplot(weight ~ group, data = PlantGrowth)

A basic lm()

Let’s fit an lm() now with the categorical explanatory variable group. They syntax is the same as before:

fit = lm(weight ~ group, data = PlantGrowth)
summary(fit)
## 
## Call:
## lm(formula = weight ~ group, data = PlantGrowth)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0710 -0.4180 -0.0060  0.2627  1.3690 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.0320     0.1971  25.527   <2e-16 ***
## grouptrt1    -0.3710     0.2788  -1.331   0.1944    
## grouptrt2     0.4940     0.2788   1.772   0.0877 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6234 on 27 degrees of freedom
## Multiple R-squared:  0.2641, Adjusted R-squared:  0.2096 
## F-statistic: 4.846 on 2 and 27 DF,  p-value: 0.01591

But the interpretation of the results often leads to confusion. Let’s look at the results of summary(fit).

Where did the group ctrl go? The answer is there is a short, and longer answer to this. Let’s first give the short one: ctrl is the intercept, and the other predictors depict the difference between ctrl and the respective levels. So, we could say that ctrl is a kind of “reference”, encoded by the intercept, and we test for a difference of the other levels against this reference.

Re-ordering the levels

If you want to change which factor level is the reference, you can use:

PlantGrowth$group2 = relevel(PlantGrowth$group, "trt1")

Now, we plot

boxplot(weight ~ group2, data = PlantGrowth)

We see that trt1 is the first level (you can also see this if checking levels() or str() for the factor). Let’s fit the model:

fit = lm(weight ~ group2, data = PlantGrowth)
summary(fit)
## 
## Call:
## lm(formula = weight ~ group2, data = PlantGrowth)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0710 -0.4180 -0.0060  0.2627  1.3690 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.6610     0.1971  23.644  < 2e-16 ***
## group2ctrl    0.3710     0.2788   1.331  0.19439    
## group2trt2    0.8650     0.2788   3.103  0.00446 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6234 on 27 degrees of freedom
## Multiple R-squared:  0.2641, Adjusted R-squared:  0.2096 
## F-statistic: 4.846 on 2 and 27 DF,  p-value: 0.01591

Weird, now suddenly we have a significant difference between the groups. Wasn’t the group difference not significant before? What’s the difference?

The answer is that we are still fitting the identical regression model, and if you would do a plot(allEffects(fit)) for the first and second model, it would look the same. However, as the p-values in the regression table always compare against the reference, we now do a comparison (ctr1 vs ctr2) that we didn’t do before, and this comparison is significant.

So, if the ordering influences what levels are compared (technically, we call this contrasts, see below), how can we deal with the problem that the order influences which factors are compared. There are three answers for this:

First, in many cases, the scientific question / experimental design determines which factor level should be first. In this case, the original reference was ctrl. This clearly stands for control. So, we have a special treatment here (control), and we are probably interested in the contrast between control and the treatments, but not between the different treatments. In this case, we are probably fine.

ANOVA (Analysis of Variance)

Second, there is a another test that is commonly performed in this case, the ANOVA. We can run this via

anov = aov(fit)
summary(anov)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## group2       2  3.766  1.8832   4.846 0.0159 *
## Residuals   27 10.492  0.3886                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And the result is

##             Df Sum Sq Mean Sq F value Pr(>F)  
## group2       2  3.766  1.8832   4.846 0.0159 *
## Residuals   27 10.492  0.3886                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To interpret this, recall that in a nutshell, the ANOVA starts with a base model (in this case intercept only) and adds the variable group. It then measures:

  • How much the model improves in terms of \({R}^{2}\) (this is in the column Sum Sq).
  • If this increase of model fit is significant.

In this case, we can conclude that the variable group (3 levels) significantly improves model fit, i.e. the group seems to have an overall effect, even though the individual contrasts in the original model where not significant.

Post-Hoc Tests

Third, if there is no clear reference level, and the ANOVA confirms that the factor has an effect, we may want to compute p-values for all possible combinations of factor levels. This is done via the so-called post-hoc tests:

TukeyHSD(anov)

The result is:

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = fit)
## 
## $group2
##            diff        lwr      upr     p adj
## ctrl-trt1 0.371 -0.3202161 1.062216 0.3908711
## trt2-trt1 0.865  0.1737839 1.556216 0.0120064
## trt2-ctrl 0.494 -0.1972161 1.185216 0.1979960

This highlights, as before, a significant difference between trt1 and trt2. It is common to visualize the results of the post-hoc tests with the so-called Compact Letter Display (cld). This doesn’t work with the base TukeyHSD function, so we will use the multcomp.{R} pacakge:

library(multcomp)

fit = lm(weight ~ group, data = PlantGrowth)
tuk = glht(fit, linfct = mcp(group = "Tukey"))
summary(tuk)          # Standard display.
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lm(formula = weight ~ group, data = PlantGrowth)
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## trt1 - ctrl == 0  -0.3710     0.2788  -1.331    0.391  
## trt2 - ctrl == 0   0.4940     0.2788   1.772    0.198  
## trt2 - trt1 == 0   0.8650     0.2788   3.103    0.012 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
tuk.cld = cld(tuk)    # Letter-based display.
plot(tuk.cld)

The cld gives a new letter for each group of factor levels that are statistically undistinguishable. You can see the output via tuk.cld, here I only show the plot:


Task: Categorical analysis for the airquality data set

The airquality data set contains a categorical predictor “month”, which, however, is wrongly coded as a numeric value. We can correct this by doing

airquality$fMonth = factor(airquality$Month)

Execute this code and fit a regression for fMonth!

Solution



Advanced topic: Changing the contrasts

Before, I said that there is a long and short answer to the interpretation of the regression coefficients. Now here is the long answer: If you have a categorical predictor with > 2 levels, there are several ways to set up the model to fit those levels. Maybe the easiest idea would be to fit a mean per level. You can actually tell R to do this via

fit = lm(weight ~ 0 + group, data = PlantGrowth)

If we look at the output, we see that now we simply get the mean of each group (level):

## 
## Call:
## lm(formula = weight ~ 0 + group, data = PlantGrowth)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0710 -0.4180 -0.0060  0.2627  1.3690 
## 
## Coefficients:
##           Estimate Std. Error t value Pr(>|t|)    
## groupctrl   5.0320     0.1971   25.53   <2e-16 ***
## grouptrt1   4.6610     0.1971   23.64   <2e-16 ***
## grouptrt2   5.5260     0.1971   28.03   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6234 on 27 degrees of freedom
## Multiple R-squared:  0.9867, Adjusted R-squared:  0.9852 
## F-statistic: 665.5 on 3 and 27 DF,  p-value: < 2.2e-16

Why does R not do that by default? Because now, we see the comparison of each group against zero in the p-values. In some cases, this can be interesting, but in most cases where we have a control and treatment and are interested in the difference between treatment and control, this is not informative. Therefore, R uses the so-called treatment contrasts, which is what we had before.

There are actually a number of further options for specifying contrasts. You can tell R by hand how the levels should be compared or use some of the pre-defined contrasts. Here is an example:

PlantGrowth$group3 = PlantGrowth$group
contrasts(PlantGrowth$group3) = contr.helmert
fit = lm(weight ~ group3, data = PlantGrowth)
summary(fit)
## 
## Call:
## lm(formula = weight ~ group3, data = PlantGrowth)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0710 -0.4180 -0.0060  0.2627  1.3690 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.07300    0.11381  44.573  < 2e-16 ***
## group31     -0.18550    0.13939  -1.331  0.19439    
## group32      0.22650    0.08048   2.814  0.00901 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6234 on 27 degrees of freedom
## Multiple R-squared:  0.2641, Adjusted R-squared:  0.2096 
## F-statistic: 4.846 on 2 and 27 DF,  p-value: 0.01591

What we are using here is Helmert contrasts, which contrast the second level with the first, the third with the average of the first two, and so on. Which contrasts make most sense depends on the question. For more details, see here:
https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/j.2041-210X.2010.00012.x.

3.1.5 Exercise: Global Plant Trait Analysis

Look at the plantHeight dataset in Ecodata. Let’s assume we want to analyze whether height of plant species from around the world depends on temperature at the location of occurrence. Note that “loght” = log(height).

library(EcoData)
## 
## Attaching package: 'EcoData'
## The following object is masked from 'package:MASS':
## 
##     cement
model = lm(loght ~ temp, data = plantHeight)
summary(model)
## 
## Call:
## lm(formula = loght ~ temp, data = plantHeight)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.97903 -0.42804 -0.00918  0.43200  1.79893 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.225665   0.103776  -2.175    0.031 *  
## temp         0.042414   0.005593   7.583 1.87e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6848 on 176 degrees of freedom
## Multiple R-squared:  0.2463, Adjusted R-squared:  0.242 
## F-statistic:  57.5 on 1 and 176 DF,  p-value: 1.868e-12

The model suggests a significant global trend of plant height increasing with temperature.


Tasks
  1. Perform residual checks and modify the model if you think it is necessary. Does the effect still hold?
  2. A concern regarding this analysis is that species are not fully independent. E.g., the plant family of Ericaceae, comprising many tiny dwarf shrubs, could have evolved in colder regions by chance. Is the signal still there if we look at families, rather than species? For that, try fitting the regression for the mean per family. Hint: you could use the aggregate() function to get means per family.
  3. The data set also includes a categorical variable “growthform”. Test if growthform has an effect on the plant height.
Solution

1.

par(mfrow = c(2, 2))
plot(model)

Looks OK!

2.

aggDat = aggregate(. ~ Family, 
                data = plantHeight[, c(4, 7, 14)], FUN = mean)

model2 = lm(loght ~ temp, data = aggDat)
summary(model2)
## 
## Call:
## lm(formula = loght ~ temp, data = aggDat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.16556 -0.38220  0.02092  0.26734  1.38896 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.27817    0.14910  -1.866   0.0665 .  
## temp         0.04884    0.00781   6.254 3.35e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5195 on 66 degrees of freedom
## Multiple R-squared:  0.3721, Adjusted R-squared:  0.3626 
## F-statistic: 39.12 on 1 and 66 DF,  p-value: 3.349e-08
summary(aov(model2))
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## temp         1  10.56   10.56   39.12 3.35e-08 ***
## Residuals   66  17.81    0.27                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yes, there is still an effect

3.

model3 = lm(loght +  temp ~ growthform, data = plantHeight)
summary(model3)
## 
## Call:
## lm(formula = loght + temp ~ growthform, data = plantHeight)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.973  -4.362   1.440   5.811  16.561 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)          13.75527    8.62265   1.595    0.113
## growthformHerb       -2.71491    8.72008  -0.311    0.756
## growthformHerb/Shrub  3.92082   12.19427   0.322    0.748
## growthformShrub       0.02093    8.71019   0.002    0.998
## growthformShrub/Tree 11.46166    8.97474   1.277    0.203
## growthformTree        6.88269    8.69304   0.792    0.430
## 
## Residual standard error: 8.623 on 162 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.232,  Adjusted R-squared:  0.2083 
## F-statistic: 9.787 on 5 and 162 DF,  p-value: 3.451e-08
summary(aov(model3))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## growthform    5   3638   727.7   9.787 3.45e-08 ***
## Residuals   162  12045    74.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations deleted due to missingness

There is also an effect of growth form. Note that the comparisons are against the growth form fern (intercept), which has only one observation, so it may make sense to re-order the factor in the regression so that you compare, e.g., against herbs (will yield more significant comparisons).



3.2 Multiple Regression

Multiple (linear) regression means that we consider more than 1 predictor in the same model. The syntax is very easy: Just add your predictors (numerical or categorical) to your regression formula, as in the following example for the airquality dataset. To be able to also add a factor, I created a new variable fMonth to have month as a factor (categorical):

airquality$fMonth = factor(airquality$Month)
fit = lm(Ozone ~ Temp + Wind + Solar.R + fMonth, data = airquality)

The resulting regression table looks already a bit intimidating, but in principle everything is interpreted as before:

## 
## Call:
## lm(formula = Ozone ~ Temp + Wind + Solar.R + fMonth, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.344 -13.495  -3.165  10.399  92.689 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -74.23481   26.10184  -2.844  0.00537 ** 
## Temp          1.87511    0.34073   5.503 2.74e-07 ***
## Wind         -3.10872    0.66009  -4.710 7.78e-06 ***
## Solar.R       0.05222    0.02367   2.206  0.02957 *  
## fMonth6     -14.75895    9.12269  -1.618  0.10876    
## fMonth7      -8.74861    7.82906  -1.117  0.26640    
## fMonth8      -4.19654    8.14693  -0.515  0.60758    
## fMonth9     -15.96728    6.65561  -2.399  0.01823 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.72 on 103 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.6369, Adjusted R-squared:  0.6122 
## F-statistic: 25.81 on 7 and 103 DF,  p-value: < 2.2e-16

Luckily, we also have the effect plots to make sense of this:

plot(allEffects(fit, partial.residuals = T) )

Multiple regression != A lot of univariate regressions

A common misunderstanding is that the above regression simply amounts to 4 independent univariate regressions. Let’s look at the model

fit = lm(Ozone ~ Wind , data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Wind, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.572 -18.854  -4.868  15.234  90.000 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  96.8729     7.2387   13.38  < 2e-16 ***
## Wind         -5.5509     0.6904   -8.04 9.27e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.47 on 114 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.3619, Adjusted R-squared:  0.3563 
## F-statistic: 64.64 on 1 and 114 DF,  p-value: 9.272e-13

The estimated effect is - 5.55, while in the multiple regression, we had -3.1. What’s going on?

The reason is that Wind and Temp are correlated (the technical term is collinear). You can see this by running

plot(Wind ~ Temp, data = airquality)

This means that if we take Temp out of the model, Wind will absorb a part of the effect of Temp, or, to put it differently: If we include Temp in the model, the model will fit the effect of Wind after removing the effect that can be explained by Temp, and vice versa.


Task

Try out different combinations of predictors and observe how the estimates change. Try to find the predictor combination for which the effect of Wind on Temp is maximal.

Solution



So, which effect is the correct one, the univariate or the multivariate model? We will speak about the rules when to put variables in and out of the regression later, in the chapter on model choice. For the moment, however, note that if two variables correlate, including or removing one will change the estimate for the other. Remember: If there is collinearity, including one variable changes the effect size for other variables!

3.2.1 Understanding the Effect of Collinearity

We can understand the problem of one variable influencing the effect of the other in more detail if we simulate some data. Let’s create 2 positively collinear predictors:

x1 = runif(100, -5, 5)
x2 = x1 + 0.2*runif(100, -5, 5)

We can check whether this has worked, through visual inspection as well as by calculating the correlation coefficient:

plot(x1, x2)

cor(x1, x2)
## [1] 0.9787805

The first case I want to look at, is when effect1 and effect2 have equal sign. Let’s create such a situation, by simulating a normal response \(y\), where the intercept is 0, and both predictors have effect = 1:

y = 0 + 1*x1 + 1*x2 + rnorm(100)

In this case, univariate models have too high effect sizes, because in conjunction, 1) positive correlation between predictors and 2) equal effect direction can lead to predictors absorbing each other’s effect if one is taken out:

coef(lm(y ~ x1))
## (Intercept)          x1 
##  -0.0674279   1.9626284
coef(lm(y ~ x2))
## (Intercept)          x2 
##  -0.1684849   1.9446006

You can also see this visually:

par(mfrow = c(1, 2))
plot(x1, y, main = "x1 effect", ylim = c(-12, 12))
abline(lm(y ~ x1))

# Draw a line with intercept 0 and slope 1,
# just like we simulated the true dependency of y on x1:
abline(0, 1, col = "red")

legend("topleft", c("fitted", "true"), lwd = 1, col = c("black", "red"))
plot(x2, y, main = "x2 effect", ylim = c(-12, 12))
abline(lm(y ~ x2))
abline(0, 1, col = "red")
legend("topleft", c("fitted", "true"), lwd = 1, col = c("black", "red"))

The multivariate model, on the other hand, gets the right estimates (with a bit of error):

coef(lm(y~x1 + x2))
## (Intercept)          x1          x2 
##  -0.1282047   0.8946398   1.0788274

Task

Check what happens if the 2 effects have opposite sign.

Solution

x1 = runif(100, -5, 5)
x2 = -x1 + 0.2*runif(100, -5, 5)
y = 0 + 1*x1 + 1*x2 + rnorm(100)

cor(x1, x2)
## [1] -0.985116
coef(lm(y ~ x1))
## (Intercept)          x1 
## -0.01395850 -0.01660575
coef(lm(y ~ x2))
## (Intercept)          x2 
## -0.00679816  0.05001460
par(mfrow = c(1, 2))
plot(x1, y, main = "x1 effect", ylim = c(-12, 12))
abline(lm(y ~ x1))
abline(0, 1, col = "red")
legend("topleft", c("fitted", "true"), lwd = 1, col = c("black", "red"))
plot(x2, y, main = "x2 effect", ylim = c(-12, 12))
abline(lm(y ~ x2))
abline(0, 1, col = "red")
legend("topleft", c("fitted", "true"), lwd = 1, col = c("black", "red"))

coef(lm(y~x1 + x2))
## (Intercept)          x1          x2 
##  0.05231165  1.11040551  1.14070352

Both effects cancel out.



3.2.2 Scaling Variables in the Multiple Regression

Before, we had already computed the regression table for a regression with 4 predictors:

airquality$fMonth = factor(airquality$Month)
fit = lm(Ozone ~ Temp + Wind + Solar.R + fMonth, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Temp + Wind + Solar.R + fMonth, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.344 -13.495  -3.165  10.399  92.689 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -74.23481   26.10184  -2.844  0.00537 ** 
## Temp          1.87511    0.34073   5.503 2.74e-07 ***
## Wind         -3.10872    0.66009  -4.710 7.78e-06 ***
## Solar.R       0.05222    0.02367   2.206  0.02957 *  
## fMonth6     -14.75895    9.12269  -1.618  0.10876    
## fMonth7      -8.74861    7.82906  -1.117  0.26640    
## fMonth8      -4.19654    8.14693  -0.515  0.60758    
## fMonth9     -15.96728    6.65561  -2.399  0.01823 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.72 on 103 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.6369, Adjusted R-squared:  0.6122 
## F-statistic: 25.81 on 7 and 103 DF,  p-value: < 2.2e-16

So, which of the predictors is the strongest (= most effect on the response)? Superficially, it looks as if Month has the highest values. But that does mean that Month is the most important?

No, and the reason is that we have to remember the effect on the response \(y = \text{regression estimate} * \text{predictor}\), i.e if we have a predictor with a large range (difference between min/max values), it may have a strong effect even though the estimate is small. So, we cannot compare the effect sizes directly.

A small trick that is therefore often applied is to divide all numeric predictors by their standard deviation to bring them all on the same range, which will then be roughly between -2, 2. You can do this by hand, or use the scale() function in R:

airquality$sTemp = scale(airquality$Temp) # also performs centering
airquality$sTemp = airquality$Temp / sd(airquality$Temp) # only scaling.

We do the same for the other numeric variables and run the regression:

airquality$sWind = scale(airquality$Wind)  
airquality$sSolar.R = scale(airquality$Solar.R)
fit = lm(Ozone ~ sTemp + sWind + sSolar.R + fMonth, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ sTemp + sWind + sSolar.R + fMonth, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.344 -13.495  -3.165  10.399  92.689 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -95.481     23.505  -4.062 9.51e-05 ***
## sTemp         17.748      3.225   5.503 2.74e-07 ***
## sWind        -10.952      2.325  -4.710 7.78e-06 ***
## sSolar.R       4.703      2.131   2.206   0.0296 *  
## fMonth6      -14.759      9.123  -1.618   0.1088    
## fMonth7       -8.749      7.829  -1.117   0.2664    
## fMonth8       -4.197      8.147  -0.515   0.6076    
## fMonth9      -15.967      6.656  -2.399   0.0182 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.72 on 103 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.6369, Adjusted R-squared:  0.6122 
## F-statistic: 25.81 on 7 and 103 DF,  p-value: < 2.2e-16

We can compare the effect sizes directly, which suggests that Temp is actually the most important predictor.

Note: In the code above, I used scale(...). By default, the scale function will scale and center. As discussed before, centering is nearly always useful as it improves the interpretability of the intercept, so I would suggest to use this as a default when scaling.


Tasks

Discuss: Under which circumstances should you center / scale, and how should you discuss the estimated coefficients in a paper?

Solution

Scaling = estimate of relative imporatance. Original units: interpretable as effect per unit change.



3.2.3 ANOVA for Multiple Regression

Another option to see which variable is more important is variance partitioning, aka ANOVA.

In an ANOVA, we add variable by variable to the model, and see how much the fit to the data (expressed by residual sum of squares) improves. We can do this via

fit = lm(Ozone ~ Wind + Temp, data = airquality)
summary(aov(fit))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Wind          1  45284   45284   94.81  < 2e-16 ***
## Temp          1  25886   25886   54.20 3.15e-11 ***
## Residuals   113  53973     478                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 37 observations deleted due to missingness

So, why has Wind the larger effect, again? Didn’t we just say that Temp has a larger effect? Is there something wrong with our ANOVA?

The problem with the aov function is that it performs a so-called type I ANOVA. The type I ANOVA adds variables in the order in which they are in the model formula. If I specify another formula, the result is different:

fit = lm(Ozone ~ Temp + Wind, data = airquality)
summary(aov(fit))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Temp          1  61033   61033  127.78  < 2e-16 ***
## Wind          1  10137   10137   21.22 1.08e-05 ***
## Residuals   113  53973     478                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 37 observations deleted due to missingness

The difference is due to the collinearity of the variables. Because Temp and Wind are collinear, the variable that is added first to the model will absorb variation from the other, and thus seems to explain more of the response.

There are other types of ANOVA that avoid this problem. The so-called type II ANOVA shows for each variable only the part that is uniquely attributable to the respective variable

car::Anova(fit, type = "II")
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'hms'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
## Anova Table (Type II tests)
## 
## Response: Ozone
##           Sum Sq  Df F value    Pr(>F)    
## Temp       25886   1  54.196 3.149e-11 ***
## Wind       10137   1  21.223 1.080e-05 ***
## Residuals  53973 113                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is also type III, which is as type II, but avoids a similar problem for interactions (see next subchapter). This is probably the most conservative setting:

car::Anova(fit, type = "III")
## Anova Table (Type III tests)
## 
## Response: Ozone
##             Sum Sq  Df F value    Pr(>F)    
## (Intercept)   4335   1  9.0763  0.003196 ** 
## Temp         25886   1 54.1960 3.149e-11 ***
## Wind         10137   1 21.2230 1.080e-05 ***
## Residuals    53973 113                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here is an overview of the situation for 2 predictors A and B and their interaction. The upper left figure corresponds to the case where we have no collinearity between either of those variables. The figure on the top right (and similarly types I - III) are the three possible types of ANOVA for variables with collinearity. The “overlap” between the circles depicts the shared part, i.e. the variability that can be expressed by either variable (due to collinearity). Note that the shares in Type II, III do not add up to 1, as there is a kind of “dark variation” that we cannot securely add to either variable.


Task

Try out the difference between type I, II, III ANOVA for the airquality data set, either for the simple Wind + Temp model, or for more complicated models. If you want to see the effects of Type III Anova, you need to add an interaction (see next section).

Solution



3.2.4 Interactions

When we have multiple variables, we can have the situation that the value of one variable influences the effect of the other(s). Technically, this is called in interaction. In situations where the causal direction is known, this is also called a moderator. An example: Imagine we observe that the effect of aspirin differs depending on the weight of the subject. Technically, we have an interaction between aspirin and weight. Physiologically, we know the causal direction is “weight -> effect of aspirin”, so we can say weight is a moderator for the effect of aspirin.

fit = lm(Ozone ~ Temp * Wind, data = airquality)
plot(allEffects(fit))

We will have a look at the summary later, but for the moment, let’s just look at the output visually. In the effect plots, we see the effect of Temperature on Ozone for different values of Wind. We also see that the slope changes. For low Wind, we have a strong effect of Temperature. For high Wind, the effect is basically gone.

Let’s look at the interaction syntax in more detail. The “*” operator in an lm().{R} is a shorthand for main effects + interactions. You can write equivalently:

fit = lm(Ozone ~ Wind + Temp + Wind:Temp, data = airquality)

What is fit here is literally a third predictor that is specified as Wind * Temp (normal multiplication). The above syntax would allow you to also have interactions without main effects, e.g.:

fit = lm(Ozone ~ Wind + Wind:Temp, data = airquality)

Although this is generally never advisable, as the main effect influences the interaction, unless you are sure that the main effect must be zero.

There is another important syntax in R:

fit = lm(Ozone ~ (Wind + Temp + Solar.R)^2 , data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ (Wind + Temp + Solar.R)^2, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -38.685 -11.727  -2.169   7.360  91.244 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -1.408e+02  6.419e+01  -2.193  0.03056 * 
## Wind          1.055e+01  4.290e+00   2.460  0.01555 * 
## Temp          2.322e+00  8.330e-01   2.788  0.00631 **
## Solar.R      -2.260e-01  2.107e-01  -1.073  0.28591   
## Wind:Temp    -1.613e-01  5.896e-02  -2.735  0.00733 **
## Wind:Solar.R -7.231e-03  6.688e-03  -1.081  0.28212   
## Temp:Solar.R  5.061e-03  2.445e-03   2.070  0.04089 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.17 on 104 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.6863, Adjusted R-squared:  0.6682 
## F-statistic: 37.93 on 6 and 104 DF,  p-value: < 2.2e-16
plot(allEffects(fit), selection = 1)

plot(allEffects(fit), selection = 2)

plot(allEffects(fit), selection = 3)

This creates all main effect and second order (aka two-way) interactions between variables. You can also use ^3 to create all possible 2-way and 3-way interactions between the variables in the parentheses. By the way: The ()^2 syntax for interactions is the reason why we have to write I(x^2) if we want to write a quadratic effect in an lm.

Categorical variables

When you include an interaction with a categorical variable, that means a separate effect will be fit for each level of the categorical variable, as in

fit = lm(Ozone ~ Wind * fMonth, data = airquality)
summary(fit)
## 
## Call:
## lm(formula = Ozone ~ Wind * fMonth, data = airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.528 -12.562  -2.246  10.691  77.750 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    50.748     15.748   3.223  0.00169 ** 
## Wind           -2.368      1.316  -1.799  0.07484 .  
## fMonth6       -41.793     31.148  -1.342  0.18253    
## fMonth7        68.296     20.995   3.253  0.00153 ** 
## fMonth8        82.211     20.314   4.047 9.88e-05 ***
## fMonth9        23.439     20.663   1.134  0.25919    
## Wind:fMonth6    4.051      2.490   1.627  0.10680    
## Wind:fMonth7   -4.663      2.026  -2.302  0.02329 *  
## Wind:fMonth8   -6.154      1.923  -3.201  0.00181 ** 
## Wind:fMonth9   -1.874      1.820  -1.029  0.30569    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.12 on 106 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5089 
## F-statistic: 14.24 on 9 and 106 DF,  p-value: 7.879e-15

The interpretation is like for a single categorical predictor, i.e. we see the effect of Wind as the effect for the first Month 5, and the Wind:fMonth6 effect, for example, tests for a difference in the Wind effect between month 5 (reference) and month 6. As before, you could change this behavior by changing contrasts.

Interactions and centering

A super important topic when working with numeric interactions is centering.


Task

Compare the estimates for Wind / Temp for the following models

  • Ozone ~ Wind
  • Ozone ~ Temp
  • Ozone ~ Wind + Temp
  • Ozone ~ Wind * Temp

How do you explain the differences in the estimates for the main effects of Wind and Temp? What do you think corresponds most closely to the “true” effect of Wind and Temp? Maybe you know the answer already. If not, consider the following simulation, where we create data with known effect sizes:

# Create predictor variables.
x1 = runif(100, -1, 1)
x2 = runif(100, -1, 1)

# Create response for lm, all effects are 1.
y = x1 + x2 + x1*x2 + rnorm(100, sd = 0.3)

# Fit model, but shift the mean of the predictor.
fit = lm(y ~ x1 * I(x2 + 5))
summary(fit)
## 
## Call:
## lm(formula = y ~ x1 * I(x2 + 5))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.80571 -0.20447 -0.03859  0.29728  0.76069 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -4.75324    0.29134 -16.315  < 2e-16 ***
## x1           -4.57245    0.55751  -8.202 1.06e-12 ***
## I(x2 + 5)     0.95806    0.05805  16.504  < 2e-16 ***
## x1:I(x2 + 5)  1.10472    0.11037  10.010  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3396 on 96 degrees of freedom
## Multiple R-squared:  0.8885, Adjusted R-squared:  0.885 
## F-statistic:   255 on 3 and 96 DF,  p-value: < 2.2e-16
plot(allEffects(fit))

Play around with the shift in x2, and observe how the effects change. Try how the estimates change when centering the variables via the scale() command. If you understand what’s going on, you will realize that you should always center your variables, whenever you use any interactions.
Excellent explanations of the issues also in the attached paper
https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/j.2041-210X.2010.00012.x.

Solution



3.2.5 Exercise: Global Plant Trait Analysis #2


Task

Revisit exercise 3.1.5, and test

  1. If temp or NPP (net primary productivity) is a more important predictor.
  2. If growth forms (variable growthform) differ in their temperature effects.
  3. If the effect of temp remains significant if we include latitude and an interaction of latitude with temp. If not, why? Plot temp ~ lat.

Ask me to comment on case 3!

Solution



3.3 Model Choice and Causal Inference

What we saw so far is that there is a large number of models we could fit. But how do we decide which is the “right” one? A basic requirement is that the residuals should more or less fit. It is seldom sensible to use a model that does not fit to the data. Beyond that, however, there is a range of options which is sensible, depending on the purpose of the model.

In stats, we distinguish at least 2 basic purposes:

  • Prediction: If our purpose is to build a predictive model, we are searching for the model that makes the smallest possible error on a new data sample.
  • (Causal) inference: When we are speaking about inference, that means we are interested in the estimated effects and we would like them to be identical to the “true” causal effects.

There is a further subdivision with regards to prior knowledge:

  • In an exploratory analysis, we have only a vague idea what we are looking for. We might just be scanning the data set for possible (causal) relationships.
  • In a confirmatory analysis, we have a clear target for the analysis, and ideally a plan for which model we want to fit, prior to seeing the data.

Depending on the analysis goal, different methods are appropriate, and we will talk about those in this chapter. The most common goal for scientific papers is a confirmatory causal analysis (even though the actual practice does not always follow this).

Even within each of these objectives, there are a number of additional criteria that may influence which method and model one will choose for the analysis. For example,

  • Either for predictions or for estimators, do I care more about a small error, or about bias? (Error = typical (mean) difference between estimator and truth; Bias = systematic difference between estimator and truth)

  • Do I want confidence intervals to be correct (coverage), and calibrated p-values?

  • Do we have experimental data, where all predictors are known, measured, and randomized / orthogonal, or do we have observational data, where we do not have controlled predictors, and collinearity / confounding is the norm.

All of these play into the choice of model and model selection method. Some methods, for example, produce smaller errors on the estimators, but a larger bias. In this chapter, I will provide you with a rough overview about the methods. We will talk about them in more detail in the next days.


Discussion

Discuss with your partners: How do you typically choose which regression formula to fit?



3.3.1 The Bias-Variance Trade-off

One fundamental idea about modelling choice is the bias-variance trade-off, which applies regardless of whether we are interested in causal effects (next section) or predictions. The idea is the following:

  • The more variables / complexity we include in the model, the better it can (in principle) adjust to the true relationship, thus reducing model error from bias.
  • The more variables / complexity we include in the model, the larger our error (variance) on the fitted coefficients, thus increasing model error from variance. This means, the model adopts to the given data but no longer to the underlying relationship.

If we sum both terms up, we see that at the total error of a model that is too simple will be dominated by bias (underfitting), and the total error of a model that is too complex will be dominated by variance (overfitting):

We will do some practical simulations on this on Wednesday, for the moment let’s just accept this idea as a fact.

3.3.2 Causal Inference

Apart from the bias-variance trade-off, a crucial consideration is if we are just interested in predictions, or in causal effects. If we are after causal effects, the correct selection of variables is crucial, while it isn’t if we just want to predict. This is reviewed in the excellent paper by Lederer et al., which is available here.

The basic idea is the following:

Let’s first define what we mean by “causality”: Assume we look at the effect of a target variable (something that could be manipulated = predictor) on another variable (the outcome = response) in the presence of other (non-target) variables. The goal of a causal analysis is to control for these other variables, in such a way that we estimate the same effect size we would obtain if only the target predictor was manipulated (as in a randomized controlled trial).

You probably have learned in your intro stats class that, to do so, we have to control for confounders. I am less sure, however, if everyone is clear about what a confounder is. In particular, confounding is more specific than having a variable that correlates with predictor and response. The direction is crucial to identify true confounders. For example, C) in the figure below shows a collider, i.e. a variable that is influenced by predictor and response. Although it correlates with predictor and response, correcting for it (or including it) in a multiple regression will create a collider bias on the causal link we are interested in (Corollary: Including all variables is not always a good thing).

The bottom line of this discussions (and the essence of Pearl 2000, 2009) is that to establish causality for a specific link, we have to close the so-called back-door paths for this link. So, the strategy for fitting a causal effect is:

  • Start by writing down the hypothesis / structure that you want to estimate causally (for example, in A, B “Plant diversity” -> Ecosystem productivity).

Then, include / exclude other variables with the goal of:

  • Controlling for confounders (back-doors, blue paths in the figure).
  • Not controlling for colliders, (something similar, called “M-Bias”,) and other similar relationships (red paths).
  • It depends on the question whether we should control for mediators (yellow paths).

Note: These other variables (if included) are just there to correct our estimates (-> called nuisance parameters), and we should later not discuss them, as they were not themselves checked for confounding (Table 2 fallacy).


Case study 1

Take the example of the past exercise (airquality) and assume, the goal is to understand the causal effect of Temperature on Ozone (primary hypothesis). Draw a causal diagram to decide which variables to take into the regression (i.e. noting which are confounders, mediators or colliders), and fit the model.

Solution


  • Solar.R could affect both Temp, Ozone -> Coufounder, include
  • Wind could affect Temp, Ozone -> Coufounder, include. Alternatively, one could assume that Temp is also affecting Wind, then it’s a mediator
  • I would not include Month, as the Month itself should not affect Ozone, it’s the Temp, Solar.R of the month that must have the effect. It’s more like a placeholder, but if you include it it will nearly act as a collider, because it can snitch away some of the effects of the other variables.

Case study 2

Perform a causal, a predictive and an exploratory analysis of the Swiss fertility data set called “swiss”, available in the standard R data sets. Target for the causal analysis is to estimate the causal (separate direct and indirect effects) of education on fertility, i.e. lm(Fertility ~ Education, data = swiss).

Solution

  • Agriculture, Catholic could be seen as confounders or mediators, depending on whether you think Education affects the number of people being in Agriculture or Catholic, or vice versa
  • Infant mortality could be a mediator or a collider, depeding on whether you think fertility -> infant mortality or infant mortality -> fertility. I would tend to see it as a mediator.

For all mediators: remember that if you want to get the total (indirect + direct) effect of education on fertility, you should not include mediators. If you want to get the direct effect only, they should be included.



3.3.3 Model Selection Methods

Regardless of whether we do a causal, exploratory or a predictive analysis, we sometimes may still want to get some aid in deciding on the model structure. Specifically:

  • For a predictive analysis, even if we know the true causal structure, it may be better to fit a simpler model to reduce the bias-variance trade-off.
  • For a causal analysis, we may not be sure about certain relationships, and we may want to test if a particular hypothesis is better supported by the data than another, or we may be data-limited as well, which means we have to reduce complexity.

In these situations, model selection methods may help. The key for using them is to understand that neither of them can do magic. If you have a limited data set and a massive number of predictors, they will not magically produce the correct model. However, they can be useful in certain situations. Let’s introduce them first. I discuss possible problems in the next chapter.

Likelihood-ratio tests

A likelihood-ratio test (LRT) is a hypothesis test that can be used to compare 2 nested models. Nested means that the simpler of the 2 models is included in the more complex model.

The more complex model will always fit the data better, i.e. have a higher likelihood. This is the reason why you shouldn’t use fit or residual patterns for model selection. The likelihood-ratio test tests whether this improvement in likelihood is significantly larger than one would expect if the simpler model is the correct model.

Likelihood-ratio tests are used to get the p-values in an R ANOVA, and thus you can also use the anova function to perform an likelihood-ratio test between 2 models (Note: For simple models, this will run an F-test, which is technically not exactly a likelihood-ratio test, but the principle is the same):

# Model 1
m1 = lm(Ozone ~ Wind , data = airquality)

# Model 2
m2 = lm(Ozone ~ Wind + Temp, data = airquality)

# LRT
anova(m1, m2)
## Analysis of Variance Table
## 
## Model 1: Ozone ~ Wind
## Model 2: Ozone ~ Wind + Temp
##   Res.Df   RSS Df Sum of Sq      F    Pr(>F)    
## 1    114 79859                                  
## 2    113 53973  1     25886 54.196 3.149e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC model selection

Another method for model selection, and probably the most widely used, also because it does not require that models are nested, is the AIC = Akaike Information Criterion.

The AIC is defined as \(2 \ln(\text{likelihood}) + 2k\), where \(k\) = number of parameters.

Essentially, this means AIC = Fit - Penalty for complexity.

Lower AIC is better!

m1 = lm(Ozone ~ Temp, data = airquality)
m2 = lm(Ozone ~ Temp + Wind, data = airquality)

AIC(m1)
## [1] 1067.706
AIC(m2)
## [1] 1049.741

Note 1: It can be shown that AIC is asymptotically identical to leave-one-out cross-validation, so what AIC is optimizing is essentially the predictive error of the model on new data.

Note 2: There are other information criteria, such as BIC, DIC, WAIC etc., as well as sample-size corrected versions of either of them (e.g. AICc). The difference between the methods is beyond the scope of this course. For the most common one (BIC), just the note that this penalizes more strongly for large data sets, and thus corrects a tendency of AIC to overfit for large data sets.


Task

Compare results of AIC with likelihood-ratio tests. Discuss: When to use one or the other?

Solution



Shrinkage estimation

A third option option for model selection are shrinkage estimators. These include the LASSO and ridge.

The basic idea behind these estimators is not to reduce the number of parameters, but to reduce the flexibility of the model by introducing a penalty on the regression coefficients that code a preference for smaller or zero coefficient values. Effectively, this can either amount to model selection (because some coefficients are shrunk directly to zero), or it can mean that we can fit very large models while still being able to do good predictions, or avoid overfitting.

To put a ridge penalty on the standard lm, we can use

lm.ridge(Ozone ~ Wind + Temp + Solar.R, data = airquality, lambda = 2)
##                      Wind         Temp      Solar.R 
## -62.73376169  -3.30622990   1.62842247   0.05961015

We can see how the regression estimates vary for different penalties via

plot( lm.ridge( Ozone ~ Wind + Temp + Solar.R, data = airquality,
              lambda = seq(0, 200, 0.1) ) )

3.3.4 P-hacking

The most dubious model selection strategy, actually considered scientific misconduct, is p-hacking. The purpose of this exercises is to show you how not to do model selection, i.e, that by playing around with the variables, you can make any outcome significant. That is why your hypothesis needs to be fixed before looking at the data, ideally through pre-registration, based on an experimental plan or a causal analysis. Here is the example:

Measurements of plant performance. Target was to find out if Gen1 has an effect on Performance. Various other variables are measured

set.seed(1)
dat = data.frame(matrix(rnorm(300), ncol = 10))
colnames(dat) = c("Performance", "Gen1", "Gen2", "soilC", "soilP", "Temp",
                  "Humidity", "xPos", "yPos", "Water")
summary(dat)
##   Performance            Gen1               Gen2             soilC        
##  Min.   :-2.21470   Min.   :-1.37706   Min.   :-1.8050   Min.   :-1.2766  
##  1st Qu.:-0.43496   1st Qu.:-0.38752   1st Qu.:-0.5373   1st Qu.:-0.5656  
##  Median : 0.25658   Median :-0.05656   Median : 0.1138   Median :-0.1924  
##  Mean   : 0.08246   Mean   : 0.13277   Mean   : 0.1103   Mean   : 0.1133  
##  3rd Qu.: 0.70870   3rd Qu.: 0.66515   3rd Qu.: 0.5643   3rd Qu.: 0.7126  
##  Max.   : 1.59528   Max.   : 1.98040   Max.   : 2.4016   Max.   : 1.7673  
##      soilP                Temp             Humidity             xPos        
##  Min.   :-1.914359   Min.   :-1.48746   Min.   :-2.28524   Min.   :-2.8889  
##  1st Qu.:-0.733529   1st Qu.:-0.33002   1st Qu.:-0.75750   1st Qu.:-0.8995  
##  Median :-0.312623   Median : 0.04362   Median : 0.10326   Median :-0.1313  
##  Mean   :-0.330028   Mean   : 0.23700   Mean   : 0.06683   Mean   :-0.2380  
##  3rd Qu.: 0.003638   3rd Qu.: 0.97163   3rd Qu.: 0.63563   3rd Qu.: 0.3813  
##  Max.   : 2.087166   Max.   : 2.30798   Max.   : 2.49766   Max.   : 1.8031  
##       yPos              Water        
##  Min.   :-2.40310   Min.   :-2.2891  
##  1st Qu.:-0.41395   1st Qu.:-0.5373  
##  Median : 0.03328   Median : 0.2001  
##  Mean   : 0.02441   Mean   : 0.1368  
##  3rd Qu.: 0.70437   3rd Qu.: 0.8813  
##  Max.   : 1.71963   Max.   : 2.6492
# As you see, no effect of Gen1.
summary(lm(Performance ~ ., data = dat))
## 
## Call:
## lm(formula = Performance ~ ., data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1014 -0.2262  0.1023  0.5836  1.0351 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.01744    0.19941   0.087    0.931
## Gen1        -0.02324    0.29154  -0.080    0.937
## Gen2        -0.02607    0.23874  -0.109    0.914
## soilC        0.04102    0.25354   0.162    0.873
## soilP       -0.07209    0.24970  -0.289    0.776
## Temp        -0.23499    0.19354  -1.214    0.239
## Humidity    -0.04075    0.21180  -0.192    0.849
## xPos        -0.33340    0.20491  -1.627    0.119
## yPos         0.15390    0.21238   0.725    0.477
## Water        0.13047    0.24852   0.525    0.605
## 
## Residual standard error: 0.9503 on 20 degrees of freedom
## Multiple R-squared:  0.2707, Adjusted R-squared:  -0.05751 
## F-statistic: 0.8248 on 9 and 20 DF,  p-value: 0.6012

Task

Task for you: P-hack the analysis, i.e. make an effect appear, by trying around (systematically, e.g. with selecting with data, model selection, or by hand to find a model combination that has an effect). The group who finds the model with the highest significance for Gen1 wins!

Example

summary(lm(Performance ~ Gen1 * Humidity, data = dat[20:30,]))
## 
## Call:
## lm(formula = Performance ~ Gen1 * Humidity, data = dat[20:30, 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.71665 -0.39627 -0.05915  0.28044  0.91257 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    -0.5248     0.2277  -2.304  0.05465 . 
## Gen1            0.8657     0.2276   3.804  0.00668 **
## Humidity        0.6738     0.2544   2.649  0.03298 * 
## Gen1:Humidity  -0.5480     0.1756  -3.122  0.01680 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6102 on 7 degrees of freedom
## Multiple R-squared:  0.7004, Adjusted R-squared:  0.572 
## F-statistic: 5.454 on 3 and 7 DF,  p-value: 0.03



Here some inspiration:

  1. Hack Your Way To Scientific Glory: https://projects.fivethirtyeight.com/p-hacking/
  2. False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant: https://journals.sagepub.com/doi/full/10.1177/0956797611417632
  3. Sixty seconds on … P-hacking: https://sci-hub.tw/https://www.bmj.com/content/362/bmj.k4039

John Oliver about p-hacking:

3.3.5 Problems of Stepwise Model Selection

LRT or AIC model selections are often used stepwise or global, i.e. we run either a chain of model selections (AIC or LRT), adding or removing complexity, or we run immediately all possible models and compare their AIC. Options in R for automatic model selection using AIC are the

  • StepAIC function
  • MuMIn.{R} package

Here is an example for either of those:

library(MASS)
library(MuMIn)

fit = lm(Ozone ~ . , data = airquality)
stepAIC(fit)
## Start:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     TempAdd + TempMult + TempMix + fMonth + sWind + sSolar.R
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     TempAdd + TempMult + TempMix + fMonth + sWind
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     TempAdd + TempMult + TempMix + fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     TempAdd + TempMult + fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     TempAdd + fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + sTemp + 
##     fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + cTemp + fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Month + Day + fMonth
## 
## 
## Step:  AIC=681.55
## Ozone ~ Solar.R + Wind + Temp + Day + fMonth
## 
##           Df Sum of Sq   RSS    AIC
## - Day      1     429.5 44231 680.63
## <none>                 43801 681.55
## - fMonth   4    3636.8 47438 682.40
## - Solar.R  1    2101.6 45903 684.75
## - Wind     1    9552.6 53354 701.44
## - Temp     1   13410.1 57212 709.19
## 
## Step:  AIC=680.63
## Ozone ~ Solar.R + Wind + Temp + fMonth
## 
##           Df Sum of Sq   RSS    AIC
## <none>                 44231 680.63
## - fMonth   4    3771.8 48003 681.71
## - Solar.R  1    2090.7 46322 683.76
## - Wind     1    9524.7 53756 700.28
## - Temp     1   13005.6 57237 707.24
## 
## Call:
## lm(formula = Ozone ~ Solar.R + Wind + Temp + fMonth, data = airquality)
## 
## Coefficients:
## (Intercept)      Solar.R         Wind         Temp      fMonth6      fMonth7  
##   -74.23481      0.05222     -3.10872      1.87511    -14.75895     -8.74861  
##     fMonth8      fMonth9  
##    -4.19654    -15.96728
# Default na.action for regressions in R is that NA lines are removed.
# MuMIn requires that there are no NA in the data in the first place.
# We have to change the default and remove the NA in the data.
options(na.action = "na.fail")
dat = airquality[complete.cases(airquality),]
fit = lm(Ozone ~ . , data = dat)
out = dredge(fit)
## Fixed term is "(Intercept)"
# Set back to default NA action.
options(na.action = "na.omit")

# Plot only first 6 and last 6 elements of the (realy) long list:
head(out)
## Global model call: lm(formula = Ozone ~ ., data = dat)
## ---
## Model selection table 
##      (Int)   cTm    Mnt  Slr.R sSl.R   sTm    sWn df   logLik  AICc delta
## 154  54.63 1.871 -2.992 0.0496             -11.68  6 -492.356 997.5     0
## 170  63.85 1.871 -2.992        4.467       -11.68  6 -492.356 997.5     0
## 186  54.63 1.871 -2.992 0.0496             -11.68  6 -492.356 997.5     0
## 217 -91.08       -2.992 0.0496       17.71 -11.68  6 -492.356 997.5     0
## 218  54.63 1.871 -2.992 0.0496             -11.68  6 -492.356 997.5     0
## 233 -81.86       -2.992        4.467 17.71 -11.68  6 -492.356 997.5     0
##     weight
## 154  0.167
## 170  0.167
## 186  0.167
## 217  0.167
## 218  0.167
## 233  0.167
## Models ranked by AICc(x)
tail(out)
## Global model call: lm(formula = Ozone ~ ., data = dat)
## ---
## Model selection table 
##    (Int)      Day   Mnt  Slr.R sSl.R df   logLik   AICc  delta weight
## 35 41.33  0.05724              11.48  4 -538.843 1086.1  88.54  0.496
## 51 17.63  0.05724       0.1275        4 -538.843 1086.1  88.54  0.496
## 9  18.81          3.227               3 -544.892 1096.0  98.49  0.003
## 1  42.10                              2 -546.037 1096.2  98.66  0.003
## 11 19.06 -0.01492 3.226               4 -544.891 1098.2 100.64  0.001
## 3  42.42 -0.01983                     3 -546.035 1098.3 100.77  0.001
## Models ranked by AICc(x)

Now, let’s have a look at what happens if we perform a model selection on this model

library(MASS)
set.seed(1)

dat = data.frame(matrix(runif(20000), ncol = 100))
dat$y = rnorm(200)
fullModel = lm(y ~ . , data = dat)

# Number of predictors + intercept:
length(fullModel$coefficients)
## [1] 101
# Number of significant predictors:
length(summary(fullModel)[[4]][,4][summary(fullModel)[[4]][,4] <= 0.05])
## [1] 2

2 predictors out of 100are significant (on average, we expect 5 of 100 to be significant).

selection = stepAIC(fullModel)
summary(selection)
## 
## Call:
## lm(formula = y ~ X1 + X2 + X3 + X5 + X7 + X13 + X20 + X23 + X30 + 
##     X37 + X42 + X45 + X46 + X47 + X48 + X64 + X65 + X66 + X71 + 
##     X75 + X80 + X81 + X87 + X88 + X89 + X90 + X94 + X100, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.04660 -0.50885  0.05722  0.49612  1.53704 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   1.0314     0.5045   2.044  0.04244 * 
## X1            0.4728     0.2185   2.164  0.03187 * 
## X2           -0.3809     0.2012  -1.893  0.06008 . 
## X3            0.3954     0.1973   2.004  0.04668 * 
## X5           -0.2742     0.1861  -1.473  0.14251   
## X7           -0.4442     0.1945  -2.284  0.02359 * 
## X13           0.4396     0.1980   2.220  0.02775 * 
## X20           0.3984     0.1918   2.078  0.03924 * 
## X23          -0.4137     0.2081  -1.988  0.04836 * 
## X30          -0.3750     0.1991  -1.884  0.06125 . 
## X37           0.4006     0.1989   2.015  0.04550 * 
## X42          -0.3934     0.2021  -1.946  0.05325 . 
## X45          -0.3197     0.2063  -1.550  0.12296   
## X46           0.3673     0.1992   1.844  0.06690 . 
## X47          -0.4240     0.2029  -2.090  0.03811 * 
## X48           0.5130     0.1937   2.649  0.00884 **
## X64          -0.3676     0.2094  -1.755  0.08102 . 
## X65          -0.2887     0.1975  -1.462  0.14561   
## X66           0.2769     0.2107   1.315  0.19039   
## X71          -0.5301     0.2003  -2.646  0.00891 **
## X75           0.5020     0.1969   2.550  0.01165 * 
## X80           0.3722     0.2058   1.809  0.07224 . 
## X81          -0.3731     0.2176  -1.715  0.08820 . 
## X87          -0.2684     0.1958  -1.371  0.17225   
## X88          -0.4524     0.2069  -2.187  0.03011 * 
## X89          -0.4123     0.2060  -2.002  0.04691 * 
## X90          -0.3528     0.2067  -1.707  0.08971 . 
## X94           0.3813     0.2049   1.861  0.06440 . 
## X100         -0.4058     0.2024  -2.005  0.04653 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.76 on 171 degrees of freedom
## Multiple R-squared:  0.3177, Adjusted R-squared:  0.2059 
## F-statistic: 2.843 on 28 and 171 DF,  p-value: 1.799e-05
# Number of predictors + intercept:
length(selection$coefficients)
## [1] 29
# Number of significant predictors:
length(summary(selection)[[4]][,4][summary(selection)[[4]][,4] <= 0.05])
## [1] 15

Voila, 15 out of 28 (before 100) predictors significant. Looks like we could have good fun to discuss / publish these results!

Conclusion: Stepwise selection + regression table is hidden multiple testing and has inflated Type I error rates! This is well-known in the stats literature. You CAN do hypothesis tests after model selection, but those require corrections and are not particularly popular, because they are even less significant than the full regression.

That being said, those methods work excellent to generate predictive models!

3.4 Case studies

3.4.1 Exercise: Global Plant Trait Analysis #3


Task

Revisit exercises 3.1.5 / 3.2.5 (using the dataset plantHeight), and discuss / analyze:

Which would be the appropriate model, if we want to get a predictive model for plant height, based on all the variables in the data set? Note: some text-based variables may need to be included, so probably it’s the easiest if you start with a large model that you specify by hand. You can also include interactions. The syntax:

fit <- lm((x1 + x2 + x3)^2)

includes all possible 2nd-order interactions between the variables in your model. You can extend this to x^3, x^4 but I would not recommend it, your model will get too large.

Solution

Possible solution:

library(EcoData)
plantHeight
##     sort_number site              Genus_species             Family growthform
## 1          1402  193         Acer_macryophyllum        Sapindaceae       Tree
## 2         25246  103         Quararibea_cordata          Malvaceae       Tree
## 3         11648   54         Eragrostis_dielsii            Poaceae       Herb
## 4          8168  144         Cistus_salvifolius          Cistaceae      Shrub
## 5         22422  178               Phlox_bifida      Polemoniaceae       Herb
## 6         15925   59      Homalium_betulifolium         Salicaceae      Shrub
## 7         25151   27      Pultenaea_microphylla       Fabaceae - P      Shrub
## 8         26007  118       Rhizophora_mucronata     Rhizophoraceae       Tree
## 9          6597  154                Carya_ovata       Juglandaceae       Tree
## 10        16908  106      Ischaemum_nativitatis            Poaceae       Herb
## 11         4610  201                Betula_nana         Betulaceae      Shrub
## 12         1593   86          Acmena_graveolens          Myrtaceae       Tree
## 13        22359   69         Phaleria_ixoroides      Thymelaeaceae       Tree
## 14        24493  123        Premna_serratifolia          Lamiaceae Shrub/Tree
## 15        25129   72            Pullea_perryana        Cunoniaceae       Tree
## 16        25921  161        Retama_sphaerocarpa       Fabaceae - P      Shrub
## 17        30396   46           Themeda_triandra            Poaceae       Herb
## 18        19298   63            Maesa_tongensis          Maesaceae Shrub/Tree
## 19        11305   73         Eleusine_aegyptica            Poaceae       Herb
## 20        17982  164        Lepechinia_calycina          Lamiaceae      Shrub
## 21        19569  117           Maranthes_glabra   Chrysobalanaceae       Tree
## 22        24893  189      Pseudotsuga_menziesii           Pinaceae       Tree
## 23         3156  113          Aporusa_globifera     Phyllanthaceae       <NA>
## 24        23821   40    Polygonum_lapathifolium       Polygonaceae       Herb
## 25        10692   71       Diospyros_gillespiei          Ebenaceae       Tree
## 26        15714  107         Hibiscus_tiliaceus          Malvaceae       Tree
## 27        20585   78        Myristica_macrantha      Myristicaceae       Tree
## 28        32237   81          Weinmannia_richii        Cunoniaceae Shrub/Tree
## 29        16107  122      Hybanthus_prunifolius          Violaceae      Shrub
## 30        19395  140         Mallotus_japonicus      Euphorbiaceae       Tree
## 31        19849   64    Melochia_longepetiolata          Malvaceae       Tree
## 32        11723   53       Eremophila_forrestii   Scrophulariaceae      Shrub
## 33        18175   26            Leucadendron_sp         Proteaceae      Shrub
## 34        14954   18             Hakea_rostrata         Proteaceae      Shrub
## 35        32697   38        Adenanthos_cygnorum         Proteaceae       Tree
## 36         6851  222         Cassiope_tetragona          Ericaceae      Shrub
## 37        30345  156   Thalictrum_thalictroides      Ranunculaceae       Herb
## 38        26673  209              Rumex_acetosa       Polygonaceae       Herb
## 39         6787  137          Casimiroa_greggii           Rutaceae      Shrub
## 40         4175   10       Baccharis_divaricata         Asteraceae      Shrub
## 41        15864  121          Hirtella_triandra   Chrysobalanaceae       Tree
## 42        20367  139           Morus_boninensis           Moraceae       Tree
## 43         3175  173         Aquilegia_caerulea      Ranunculaceae       Herb
## 44        21747  116      Parashorea_malaanonan   Dipterocarpaceae       Tree
## 45         5003   82       Brackenridgea_nitida          Ochnaceae Shrub/Tree
## 46        26205   77        Richella_monosperma         Annonaceae       Tree
## 47        32313   37      Xanthorrhoea_preissii   Xanthorrhoeaceae      Shrub
## 48        21013  126             Ocotea_meziana          Lauraceae       Tree
## 49        18104   21  Leptospermum_continentale          Myrtaceae      Shrub
## 50         2720  129         Ampelocera_hottlei           Ulmaceae       Tree
## 51        12031   99         Eucalyptus_miniata          Myrtaceae       Tree
## 52        15651   61      Heteropogon_triticeus            Poaceae       Herb
## 53         8736   13           Coprosma_robusta          Rubiaceae      Shrub
## 54        21930  220      Pedicularis_lapponica      Orobanchaceae       Herb
## 55        25274  151        Quercus_calliprinos           Fagaceae      Shrub
## 56        29888   30      Syncarpia_glomulifera          Myrtaceae       Tree
## 57           89  158             Abies_veitchii           Pinaceae       Tree
## 58        12090   23             Eucalyptus_sp4          Myrtaceae       Tree
## 59         3646   79          Ascarina_swamyana     Chloranthaceae       Tree
## 60        25068   34           Pteronia_pallens         Asteraceae       <NA>
## 61        29156   94            Sorocea_pileata           Moraceae       Tree
## 62         9641   65      Cyathocalyx_insularis         Annonaceae       Tree
## 63        18176   31    Leucadendron_corymbosum         Proteaceae      Shrub
## 64        18392  165               Linanthus_sp      Polemoniaceae       Herb
## 65        32694  134                Piranhea_sp    Picrodendraceae       Tree
## 66         9244   28         Crassula_rupestris       Crassulaceae      Shrub
## 67        24129  215           Potentilla_nivea           Rosaceae       Herb
## 68         7054  132       Cecropia_obtusifolia         Urticaceae       Tree
## 69         4583  111       Berlinia_grandiflora       Fabaceae - C       Tree
## 70        10189   85    Decaspermum_cryptanthum          Myrtaceae      Shrub
## 71         8927  218                  Cornus_sp          Cornaceae       Herb
## 72        31945    3          Viola_magellanica          Violaceae       Herb
## 73         3876  142       Astragalus_cruciatus       Fabaceae - P       Herb
## 74        13286   87       Gardenia_actinocarpa          Rubiaceae Shrub/Tree
## 75         3943   80    Astronidium_parviflorum    Melastomataceae Shrub/Tree
## 76        26391  212            Rosa_acicularis           Rosaceae      Shrub
## 77         1762  163       Aesculus_californica        Sapindaceae       Tree
## 78        21743   62       Paraserianthes_toona       Fabaceae - M       Tree
## 79        32699   49          Corymbia_maculata          Myrtaceae       Tree
## 80        30075  105               Tachigali_sp       Fabaceae - C       Tree
## 81        10684  115       Diospyros_borneensis          Ebenaceae       Tree
## 82         9078  203           Corylus_avellana         Betulaceae       Tree
## 83        32688   20           Allocasuarina_sp      Casuarinaceae      Shrub
## 84        11477   50    Englerophytum_natalense         Sapotaceae       Tree
## 85         2173   95   Alchornea_castaneaefolia      Euphorbiaceae      Shrub
## 86        11376  216            Empetrum_nigrum          Ericaceae      Shrub
## 87        26025  192  Rhododendron_macrophyllum          Ericaceae      Shrub
## 88        18073   83       Lepironia_articulata         Cyperaceae       Herb
## 89        17755  180             Larix_olgensis           Pinaceae       Tree
## 90        12094    8    Eucalyptus_oblongifolia          Myrtaceae       Tree
## 91        23390  104          Planchonia_careya      Lecythidaceae       <NA>
## 92         8122  200            Cirsium_vulgare         Asteraceae       Herb
## 93        12539  152              Fagus_crenata           Fagaceae       Tree
## 94         6781   84       Casearia_stenophylla         Salicaceae Shrub/Tree
## 95         5478  214      Calamagrostis_stricta            Poaceae       Herb
## 96        22889  196            Pinus_ponderosa           Pinaceae       Tree
## 97        22657   56    Phyllostylon_rhamnoides           Ulmaceae       Tree
## 98        11224   75       Elatostema_nemorosum         Urticaceae       Herb
## 99        24987   51  Psychotria_carthagenensis          Rubiaceae      Shrub
## 100       22103   29       Persoonia_lanceolata         Proteaceae      Shrub
## 101        2356  100     Alloteropsis_semialata            Poaceae       Herb
## 102       11775  194           Erigeron_glaucus         Asteraceae       Herb
## 103       24239   97             Pourouma_minor         Urticaceae       Tree
## 104       31432  213      Vaccinium_vitis-idaea          Ericaceae      Shrub
## 105       11884  183        Erucastrum_gallicum       Brassicaceae       Herb
## 106       18226   70 Leucopogon_septentrionalis          Ericaceae Shrub/Tree
## 107       21605   93                 Panicum_sp            Poaceae       Herb
## 108        4619  217                Betula_nana         Betulaceae      Shrub
## 109        4101   14     Austrocedrus_chilensis       Cupressaceae       Tree
## 110       30008   66     Syzygium_brackenridgei          Myrtaceae       Tree
## 111       25017   15       Pteridium_esculentum   Dennstaedtiaceae       Fern
## 112        2661  159        Amelanchier_arborea           Rosaceae       Tree
## 113       29608   19                   Stipa_sp            Poaceae       Herb
## 114       29609    9             Stipa_speciosa            Poaceae       Herb
## 115        3971   11     Atherosperma_moschatum Atherospermataceae       Tree
## 116       10796   60            Dombeya_ciliata          Malvaceae       <NA>
## 117       19797   74         Melicytus_fasciger          Violaceae Shrub/Tree
## 118        7039  148          Ceanothus_greggii         Rhamnaceae      Shrub
## 119       10986  114      Duguetia_surinamensis         Annonaceae       Tree
## 120       21931  221        Pedicularis_hirsuta      Orobanchaceae       Herb
## 121        4330   44         Banksia_hookeriana         Proteaceae      Shrub
## 122        8341  130           Clidemia_sericea    Melastomataceae       <NA>
## 123       32296  167       Xanthium_occidentale         Asteraceae       Herb
## 124       27405  141     Sarcopoterium_spinosum           Rosaceae      Shrub
## 125        4297   96        Bambusa_weberbaueri            Poaceae      Shrub
## 126       30971  207        Triglochin_palustre      Juncaginaceae       Herb
## 127        4614  202             Betula_pendula         Betulaceae      Shrub
## 128       12621    4         Festuca_gracillima            Poaceae       Herb
## 129       12043   55        Eucalyptus_gillenii          Myrtaceae      Shrub
## 130       32675  102                      _8324               <NA>       <NA>
## 131        5226   25            Brunia_albifora         Bruniaceae       <NA>
## 132       12046   43             Eucalyptus_sp2          Myrtaceae       Tree
## 133         227  138         Acacia_berlandieri       Fabaceae - M Shrub/Tree
## 134       18174   22    Leucadendron_meridianum         Proteaceae      Shrub
## 135        5464  195            Cakile_edentula       Brassicaceae       Herb
## 136       12089   24        Eucalyptus_socialis          Myrtaceae       Tree
## 137       27860   88   Sclerolobium_paniculatum       Fabaceae - C       <NA>
## 138        6529  143         Carnegiea_gigantea          Cactaceae      Shrub
## 139        5079   92         Bridelia_micrantha     Phyllanthaceae       Tree
## 140       28046    5       Senecio_filaginoides         Asteraceae       Herb
## 141       32120  171        Vulpia_microstachys            Poaceae       Herb
## 142       29331   48     Spirostachys_africanus      Euphorbiaceae      Shrub
## 143       28244   67       Sesbania_grandiflora       Fabaceae - P       Tree
## 144       12604  145    Ferocactus_cylindraceus          Cactaceae      Shrub
## 145       16616  172        Ipomopsis_aggregata      Polemoniaceae       <NA>
## 146       22732  211              Picea_mariana           Pinaceae       Tree
## 147        8880  198             Corema_conradi          Ericaceae      Shrub
## 148       21232  149       Opuntia_acanthocarpa          Cactaceae      Shrub
## 149       18833  147        Ludwigia_leptocarpa         Onagraceae Herb/Shrub
## 150        4331   42         Banksia_hookeriana         Proteaceae      Shrub
## 151        2834  109       Andropogon_greenwayi            Poaceae       Herb
## 152       10460   12       Dicksonia_antarctica      Dicksoniaceae      Shrub
## 153        9565  101  Cupaniopsis_anacardioides        Sapindaceae       Tree
## 154        4332   41          Banksia_tricuspis         Proteaceae      Shrub
## 155       12097   16             Eucalyptus_sp5          Myrtaceae       Tree
## 156        4954  176         Bouteloua_gracilis            Poaceae       Herb
## 157       25823  174       Ratibida_columnifera         Asteraceae       Herb
## 158       11205  112      Elateriospermum_tapos      Euphorbiaceae       Tree
## 159       26532  205          Rubus_chamaemorus           Rosaceae      Shrub
## 160       21730   58     Paraneurachne_muelleri            Poaceae       Herb
## 161         150   57              Acacia_aneura       Fabaceae - M Shrub/Tree
## 162       16438  179         Impatiens_capensis      Balsaminaceae       Herb
## 163       26983  208             Salix_lapponum         Salicaceae      Shrub
## 164       12619    7   Festuca_novae-zealandiae            Poaceae       Herb
## 165        3358  135             Ardisia_tenera        Myrsinaceae       Tree
## 166       12541  199            Fagus_sylvatica           Fagaceae       Tree
## 167       17783  150          Larrea_tridentata     Zygophyllaceae      Shrub
## 168       13427  204        Gentiana_campestris       Gentianaceae       Herb
## 169        7867    6        Chionochloa_pallens            Poaceae       Herb
## 170       12303  177        Euphorbia_characias      Euphorbiaceae       <NA>
## 171       15377  110        Heliconia_acuminata      Heliconiaceae       Herb
## 172       17329  170       Juniperus_virginiana       Cupressaceae      Shrub
## 173       11188   76     Elaeocarpus_pyriformis     Elaeocarpaceae       Tree
## 174        2357   91     Alloteropsis_semialata            Poaceae       Herb
## 175       30141   68       Tapeinosperma_grande        Myrsinaceae Shrub/Tree
## 176       21230   32         Opuntia_aurantiaca          Cactaceae      Shrub
## 177       29075  210           Sorbus_aucuparia           Rosaceae       Tree
## 178       13426  197          Gentiana_cruciata       Gentianaceae       Herb
##        height       loght           Country                           Site
## 1   28.000000  1.44715803               USA                 Oregon - McDun
## 2   26.600000  1.42488164              Peru                           Manu
## 3    0.300000 -0.52287874         Australia              Central Australia
## 4    1.600000  0.20411998            Israel                        Hanadiv
## 5    0.200000 -0.69897000               USA                  Indiana Dunes
## 6    1.700000  0.23044892     New Caledonia                           <NA>
## 7    0.500000 -0.30103000         Australia         Kuringai Chase, Sydney
## 8   10.000000  1.00000000              <NA>               Marshall Islands
## 9   40.000000  1.60205999               USA                       Colorado
## 10   0.500000 -0.30103000         Australia               Christmas Island
## 11   0.550000 -0.25963731           Estonia                           <NA>
## 12  32.000000  1.50514998         Australia Cairns - Daintree canopy crane
## 13   5.000000  0.69897000              Fiji                      Viti Levu
## 14   7.000000  0.84509804        Micronesia                            Yap
## 15  12.000000  1.07918125              Fiji                             ao
## 16   1.680000  0.22530928             Spain                           <NA>
## 17   0.700000 -0.15490196      South Africa              Zululand - ledube
## 18   4.000000  0.60205999              Fiji                        fulanga
## 19   0.600000 -0.22184875              Fiji                             ab
## 20   1.600000  0.20411998               USA       Jasper Ridge - Chaparral
## 21  32.000000  1.50514998           Liberia                           <NA>
## 22  61.000000  1.78532983               USA                         Oregon
## 23  14.800000  1.17026172          Malaysia                           <NA>
## 24   1.000000  0.00000000         Australia                           <NA>
## 25  15.000000  1.17609126              Fiji                           abko
## 26   7.000000  0.84509804  Papua New Guinea                Motupore Island
## 27  20.000000  1.30103000              Fiji                            abo
## 28   7.000000  0.84509804              Fiji                            abt
## 29   2.900000  0.46239800            Panama                            BCI
## 30   9.670000  0.98542647             Japan                           <NA>
## 31   8.000000  0.90308999              Fiji                              k
## 32   2.000000  0.30103000         Australia                             WA
## 33   0.600000 -0.22184875      South Africa          Stellenbosch - fynbos
## 34   1.700000  0.23044892         Australia                           <NA>
## 35   7.000000  0.84509804         Australia         Perth - Melaleuca Park
## 36   0.080000 -1.09691001         Greenland              Zackenberg - hill
## 37   0.200000 -0.69897000               USA        Duke Forest, Durham, NC
## 38   0.707000 -0.15058059           Finland                           <NA>
## 39   7.000000  0.84509804            Mexico         Linares - Puenta Viejo
## 40   0.500000 -0.30103000         Argentina           Puerto Madryn - dune
## 41  23.500000  1.37106786            Panama                   Panama - BCI
## 42  16.000000  1.20411998             Japan                           <NA>
## 43   0.233000 -0.63264408               USA                        Rockies
## 44  34.000000  1.53147892              <NA>                           <NA>
## 45  15.000000  1.17609126              Fiji                        abrambi
## 46  15.000000  1.17609126              Fiji                            aot
## 47   1.500000  0.17609126         Australia          Perth - Darling Scarp
## 48  16.000000  1.20411998        Costa Rica                           <NA>
## 49   2.800000  0.44715803         Australia             Adelaide - ferries
## 50  25.000000  1.39794001            Mexico                         Chajul
## 51  20.000000  1.30103000         Australia         Howard Springs, Darwin
## 52   0.400000 -0.39794001         Australia             Townsville savanna
## 53   6.000000  0.77815125       New Zealand                         Nelson
## 54   0.200000 -0.69897000         Greenland                   disko island
## 55   3.500000  0.54406804            Israel                         Adulam
## 56  25.000000  1.39794001         Australia            Kuringai - Diatreme
## 57  18.000000  1.25527250             Japan                           <NA>
## 58  10.000000  1.00000000         Australia Adelaide - Brookfield Chenopod
## 59  10.000000  1.00000000              Fiji                             at
## 60   0.500000 -0.30103000      South Africa                           <NA>
## 61  19.000000  1.27875360              Peru          Los Amigos floodplain
## 62  20.000000  1.30103000              Fiji                             ak
## 63   3.000000  0.47712126      South Africa    Stellenbosch - renosterveld
## 64   0.110000 -0.95860731               USA      Jasper Ridge - Serpentine
## 65  12.500000  1.09691001            Mexico                        Chamela
## 66   0.600000 -0.22184875      South Africa           Stellenbosch - Karoo
## 67   0.050000 -1.30103000         Greenland            Kangerlussuaq - dry
## 68  30.000000  1.47712125              <NA>                           <NA>
## 69  35.000000  1.54406804 Republic of Congo                    Congo - bai
## 70   3.000000  0.47712126              Fiji                              b
## 71   0.200000 -0.69897000            Norway                         Norway
## 72   0.050000 -1.30103000         Argentina        Rio Turbio - Nothofagus
## 73   0.032200 -1.49214413              <NA>                           <NA>
## 74   3.500000  0.54406804         Australia                     Queensland
## 75  12.000000  1.07918125              Fiji                           abot
## 76   0.800000 -0.09691001               USA                  Alaska campus
## 77  16.000000  1.20411998               USA      Jasper Ridge - Oak forest
## 78  16.000000  1.20411998         Australia        Townsville Vine Thicket
## 79  30.000000  1.47712125         Australia                      Toowoomba
## 80  30.000000  1.47712125              <NA>                           <NA>
## 81  18.100000  1.25767857            Brunei                           <NA>
## 82  10.000000  1.00000000            Sweden                      Stockholm
## 83   3.000000  0.47712126         Australia         Adelaide - Cox's scrub
## 84   7.000000  0.84509804      South Africa              Zululand - forest
## 85   4.000000  0.60205999              Peru      Los Amigos - successional
## 86   0.080000 -1.09691001            Sweden                Abisko - Paddus
## 87   5.000000  0.69897000    Western Oregon                           <NA>
## 88   2.500000  0.39794001              Fiji                              t
## 89  32.000000  1.50514998             China                           <NA>
## 90  30.000000  1.47712125         Australia              Huon Rd, Tasmania
## 91  10.000000  1.00000000              <NA>                Melville Island
## 92   2.000000  0.30103000       Netherlands                           <NA>
## 93  29.300000  1.46686762             Japan                           <NA>
## 94   4.000000  0.60205999              Fiji                             bt
## 95   0.220000 -0.65757732         Greenland            Kangerlussuaq - wet
## 96  41.000000  1.61278386              <NA>                           <NA>
## 97  24.000000  1.38021124         Argentina         Tucuman - Yungas North
## 98   2.000000  0.30103000              Fiji                           abkt
## 99   4.500000  0.65321251         Argentina         Tucuman - Yungas South
## 100  2.400000  0.38021124         Australia          Kuringai - Challenger
## 101  2.000000  0.30103000         Australia         Howard Springs, Darwin
## 102  0.040000 -1.39794001               USA          Oregon - Yaquina Head
## 103 28.000000  1.44715803              Peru            Los Amigos -terrace
## 104  0.070000 -1.15490196               USA               Alaska - 12 Mile
## 105  0.280000 -0.55284197               USA                           <NA>
## 106  5.000000  0.69897000              Fiji                            abk
## 107  0.500000 -0.30103000            Zambia                Zambia - miombo
## 108  0.800000 -0.09691001            Sweden                Abisko - forest
## 109 35.000000  1.54406804         Argentina                      Bariloche
## 110 20.000000  1.30103000              Fiji                            ako
## 111  1.800000  0.25527250         Australia       Green's Bush - Melbourne
## 112 19.000000  1.27875360               USA         Twin springs, Virginia
## 113  0.350000 -0.45593196         Argentina              Mendoza - Payunia
## 114  0.250000 -0.60205999         Argentina         Puerto Madryn - steppe
## 115 30.000000  1.47712125         Australia                       Tasmania
## 116 15.000000  1.17609126           France?                 Reunion Island
## 117 10.000000  1.00000000              Fiji                         atngau
## 118  3.000000  0.47712126               USA                     California
## 119 30.000000  1.47712125              <NA>                           <NA>
## 120  0.080000 -1.09691001         Greenland             Zackenberg - salix
## 121  2.020000  0.30535137         Australia                           <NA>
## 122  0.800000 -0.09691001              <NA>                           <NA>
## 123  1.150000  0.06069784             Japan                           <NA>
## 124  0.450000 -0.34678749            Israel                        Lehavim
## 125  6.000000  0.77815125              Peru            Los Amigos - Bamboo
## 126  0.150000 -0.82390874               USA            Alaska, Yukon delta
## 127  1.584893  0.20000000              <NA>                           <NA>
## 128  0.140000 -0.85387196         Argentina             Rio Turbio - heath
## 129  5.000000  0.69897000         Australia                Alice - the gap
## 130  2.500000  0.39794001              Peru                           Manu
## 131  3.000000  0.47712126      South Africa                           <NA>
## 132 20.000000  1.30103000         Australia         Armidale - Goonoowigal
## 133  6.000000  0.77815125            Mexico           Linares - thornscrub
## 134  1.700000  0.23044892      South Africa                           <NA>
## 135  0.200000 -0.69897000            Canada                    Nova Scotia
## 136  6.000000  0.77815125         Australia   Adelaide - Brookfield Mallee
## 137  3.800000  0.57978360            Brazil                           <NA>
## 138  8.000000  0.90308999               USA        Tucson - Sonoran desert
## 139  9.000000  0.95424251            Zambia               Zambia - Mateshi
## 140  0.600000 -0.22184875              <NA>                      Patagonia
## 141  0.239000 -0.62160210              <NA>                           <NA>
## 142  4.500000  0.65321251      South Africa             Zululand - Mbuzane
## 143 12.000000  1.07918125              Fiji                         a-ngau
## 144  1.700000  0.23044892               USA                         Tucson
## 145  0.810000 -0.09151498               USA                       Colorado
## 146 13.500000  1.13033377               USA               Alaska - Bonanza
## 147  0.500000 -0.30103000            Canada                         Quebec
## 148  0.720000 -0.14266750               USA                     California
## 149  1.500000  0.17609126               USA                 South Carolina
## 150  1.710000  0.23299611         Australia              Western Australia
## 151  0.300000 -0.52287874          Tanzania          Serengeti, Naabi hill
## 152  3.000000  0.47712126         Australia             Mt Field, Tasmania
## 153  8.000000  0.90308999         Australia            Darwin - East point
## 154  2.900000  0.46239800         Australia                           <NA>
## 155 13.000000  1.11394335         Australia             Bunyip - Melbourne
## 156  0.200000 -0.69897000               USA                       Colorado
## 157  1.000000  0.00000000               USA                         Kansas
## 158 39.600000  1.59769519          Malaysia                           <NA>
## 159  0.158000 -0.80134291           Finland                           <NA>
## 160  0.500000 -0.30103000         Australia Kunoth Paddock - Alice Springs
## 161  9.000000  0.95424251         Australia Kunoth Paddock - Alice Springs
## 162  3.000000  0.47712126      Rhode Island                            USA
## 163  1.050000  0.02118930            Norway                           <NA>
## 164  0.500000 -0.30103000       New Zealand                           <NA>
## 165 11.000000  1.04139268             China                           <NA>
## 166 39.000000  1.59106461           Germany                       Barvaria
## 167  1.940000  0.28780173              <NA>                           <NA>
## 168 12.400000  1.09342169            Sweden                   Sodermanland
## 169  1.500000  0.17609126       New Zealand                     Canterbury
## 170  1.000000  0.00000000             Spain                           <NA>
## 171  0.750000 -0.12493874            Brazil                           <NA>
## 172  4.000000  0.60205999               USA                           <NA>
## 173 15.000000  1.17609126              Fiji                         abngau
## 174  0.550000 -0.25963731         Australia                      Cape York
## 175  6.000000  0.77815125              Fiji                        abkngau
## 176  0.500000 -0.30103000              <NA>                           <NA>
## 177 15.000000  1.17609126           Sweeden                           Umea
## 178  0.246000 -0.60906489       Switzerland                           <NA>
##        lat     long entered.by  alt  temp diurn.temp isotherm temp.seas
## 1   44.600 -123.334     Angela  179  10.8       11.8      4.4       5.2
## 2   12.183  -70.550     Angela  386  24.5       10.8      7.4       0.9
## 3   23.800  133.833   Michelle  553  20.9       16.3      4.8       6.0
## 4   32.555   34.938     Angela  115  19.9        9.7      4.4       4.9
## 5   41.617  -86.950   Michelle  200   9.7       10.7      2.8       9.7
## 6   21.500  165.500      Laura   95  22.6        7.4      5.4       2.2
## 7   33.650  151.200   Michelle  157  16.8       10.0      4.8       3.9
## 8    9.000  168.000      Laura    2  27.7        4.8      8.8       0.2
## 9   35.800  -89.900     Angela   71  15.5       11.4      3.2       8.6
## 10  10.417  105.667      Laura    2  26.4        5.0      7.4       0.6
## 11  58.500   25.000     Angela   28   5.4        6.6      2.1       8.3
## 12  16.103  145.446     Angela  263  25.2        8.3      5.8       2.1
## 13  17.800  178.000      Laura 1108  19.3        6.3      5.8       1.5
## 14   9.500  138.167      Laura   15  27.2        6.8      9.1       0.2
## 15  17.742  178.392      Laura   47  24.8        6.3      6.3       1.3
## 16  37.133   -2.367     Angela  648  15.3       10.1      3.8       5.7
## 17  28.234   32.017     Angela  289  20.5       10.2      5.8       2.4
## 18  19.133 -178.567      Laura    0  24.9        6.2      6.0       1.4
## 19  17.667  178.167      Laura  312  23.5        6.3      6.2       1.3
## 20  37.400 -122.233     Angela  150  13.8       11.3      5.5       3.3
## 21   5.500   -7.500       Nate  152  26.0        8.8      7.5       0.9
## 22  44.000 -122.000     Angela 1446   5.0       12.8      4.1       6.1
## 23   3.000  102.333     Angela  228  25.8        9.5      8.5       0.5
## 24  30.517  145.133   Michelle  106  19.9       13.8      4.5       5.9
## 25  17.758  178.577      Laura   13  24.9        6.3      6.3       1.3
## 26   9.500  147.267      Laura   30  26.8        8.3      7.6       0.8
## 27  17.356  178.675      Laura    3  25.0        6.3      6.4       1.2
## 28  17.081  179.069      Laura    2  25.4        6.2      6.5       1.1
## 29   9.167  -79.850     Angela   94  26.3        6.7      7.3       0.7
## 30  30.333  130.400     Angela  530  18.2        6.3      2.8       5.5
## 31  18.967  178.283      Laura   72  24.1        6.4      5.9       1.5
## 32  24.650  113.700     Angela    7  22.3       10.7      4.6       4.1
## 33  33.992   18.975     Angela  387  15.7       11.2      5.3       3.5
## 34  36.917  142.417     Angela  366  13.0       12.5      4.9       4.4
## 35  31.689  115.886     Angela   60  18.3       11.5      4.9       4.1
## 36  74.476  -20.629     Angela   83 -11.1        7.0      2.1       9.3
## 37  35.967  -79.000     Angela   99  14.9       13.4      3.9       7.6
## 38  62.000   27.000     Angela  114   3.4        7.3      2.1       9.0
## 39  24.749  -99.799     Angela  736  20.7       14.3      5.5       4.0
## 40  42.769  -64.101     Angela   66  13.0       10.3      4.7       4.2
## 41   9.150  -79.849     Angela  165  26.5        6.8      7.3       0.7
## 42  26.650  142.133     Angela  230  23.4        4.6      3.1       3.6
## 43  38.966 -106.987     Angela 2966   0.2       16.9      4.0       8.6
## 44   4.967  117.800     Angela  214  25.9        7.7      8.9       0.3
## 45  16.956  179.069      Laura    5  25.5        6.2      6.6       1.1
## 46  17.447  178.917      Laura   97  24.6        6.2      6.3       1.2
## 47  32.020  116.044     Angela  209  17.0       11.2      4.6       4.5
## 48  10.433  -83.983     Angela   50  26.0        8.8      7.6       0.8
## 49  35.235  139.132     Angela   52  15.6       11.7      5.3       3.7
## 50  16.106  -90.987     Angela   41  25.9       11.3      6.9       1.5
## 51  12.494  131.108     Angela   26  27.3       10.5      6.0       1.7
## 52  19.337  146.755     Angela   79  23.9        9.9      5.2       3.1
## 53  42.000  173.000     Angela 1650   4.2        8.5      4.4       3.7
## 54  69.250  -53.600     Angela  150  -5.7        5.5      1.8       8.0
## 55  34.935   34.935     Angela  358   4.8        7.1      2.2       8.7
## 56  33.578  151.292     Angela  188  17.0        9.7      4.8       3.8
## 57  36.083  138.350     Angela 2090   2.4        8.7      2.6       8.6
## 58  34.347  139.517     Angela   99  16.2       13.4      5.1       4.5
## 59  17.329  178.983      Laura    2  25.2        6.2      6.4       1.2
## 60  33.167   22.283     Angela  732  15.7       15.0      5.6       4.0
## 61  12.567  -70.093     Angela  217  24.9       10.5      7.4       1.0
## 62  18.383  178.142      Laura   30  24.6        6.3      6.1       1.4
## 63  33.448   19.048     Angela   89  17.9       13.5      5.3       4.3
## 64  37.400 -122.224     Angela  179  13.7       11.4      5.5       3.3
## 65  19.500 -105.043     Angela  357  26.2       12.8      7.2       1.6
## 66  33.609   19.457     Angela  394  16.5       13.8      5.4       4.0
## 67  66.973  -50.568     Angela   75  -5.1        8.2      2.3      10.0
## 68  18.583  -95.117     Angela  550  22.7        8.7      5.7       2.0
## 69   2.160   16.153     Angela  403  24.8       10.5      8.0       0.6
## 70  16.583  179.242      Laura  611  22.5        6.1      6.4       1.1
## 71  68.606   17.606     Angela   44   1.2        6.3      2.6       6.2
## 72  51.578  -72.315     Angela  702   3.7        9.7      4.9       3.6
## 73  31.500   35.100     Angela  860  16.8       11.6      4.5       5.3
## 74  16.100  145.367     Angela  840  21.2        9.4      5.9       2.3
## 75  17.231  178.998      Laura    2  25.4        6.2      6.5       1.1
## 76  64.860 -147.862     Angela  688  -2.9       10.9      2.2      14.1
## 77  37.400 -122.236     Angela   84  13.8       11.2      5.5       3.3
## 78  19.332  146.773     Angela   99  23.9        9.9      5.2       3.1
## 79  28.085  151.729     Angela  643  17.0       13.7      5.1       4.8
## 80  10.983  -65.717     Angela  165  26.5       11.1      7.0       0.7
## 81   4.500  115.167       Nate  280  26.0        6.7      9.0       0.2
## 82  58.953   17.610     Angela   10   7.0        6.5      2.4       7.1
## 83  35.341  138.740     Angela  177  14.9       10.0      5.1       3.5
## 84  28.072   32.039     Angela  267  19.4       10.2      6.0       2.3
## 85  12.566  -70.105     Angela  217  24.8       10.5      7.3       1.0
## 86  68.324   18.843     Angela  554  -1.0        7.0      2.4       7.5
## 87  44.217 -122.233     Angela 1446   5.0       12.8      4.1       6.1
## 88  16.858  179.967      Laura  265  24.3        6.1      6.5       1.1
## 89  42.333  135.500     Angela    3  23.0        4.6      3.1       3.8
## 90  42.921  147.275     Angela  346   9.9        8.8      5.0       3.0
## 91  11.500  130.967     Angela   44  27.1        9.4      6.3       1.4
## 92  52.800    4.333     Angela   17   9.0        5.4      2.7       5.3
## 93  35.350  133.550     Angela  867   9.4        8.3      2.6       8.3
## 94  16.721  179.604      Laura   74  25.3        6.2      6.7       1.0
## 95  66.973  -50.569     Angela   65  -5.1        8.2      2.3      10.0
## 96  45.817 -121.950     Angela  355   9.5       10.6      3.9       5.7
## 97  23.747  -64.854     Angela  737  19.8       12.9      5.2       3.9
## 98  17.552  178.873      Laura    6  25.0        6.2      6.3       1.2
## 99  26.763  -65.333     Angela  935  18.6       11.5      4.8       4.2
## 100 33.595  151.276     Angela  151  16.9        9.8      4.8       3.8
## 101 12.494  131.108     Angela   26  27.3       10.5      6.0       1.7
## 102 44.667 -124.072     Angela  324  10.6        7.7      5.0       2.8
## 103 12.552  -70.111     Angela  237  24.8       10.5      7.3       1.0
## 104 65.391 -145.854     Angela  966  -6.4       11.2      2.1      15.1
## 105 43.000  -76.150     Angela  134   8.5       10.8      2.9       9.3
## 106 17.783  178.508      Laura   30  24.8        6.3      6.3       1.3
## 107 13.249   30.280     Angela 1506  18.6       12.4      5.6       2.4
## 108 68.329   18.836     Angela  521  -0.7        7.0      2.4       7.4
## 109 41.242  -71.425     Angela 1039   7.0       11.7      5.1       4.2
## 110 18.150  178.356      Laura   13  24.8        6.3      6.1       1.4
## 111 38.430  144.922     Angela  165  13.5        7.5      4.5       3.2
## 112 36.817  -82.464     Angela  501  12.7       13.0      3.8       7.8
## 113 36.250  -68.824     Angela 1502  10.9       16.3      5.2       5.5
## 114 42.790  -64.092     Angela   76  13.0       10.2      4.6       4.3
## 115 42.683  146.350     Angela  740   7.5        8.4      4.8       3.0
## 116 21.000   55.650     Angela  191  22.7        6.3      5.2       2.1
## 117 17.564  179.089      Laura    1  25.1        6.3      6.4       1.2
## 118 33.383 -116.000     Angela  -71  22.9       17.4      4.6       7.1
## 119  4.083  -52.667     Angela  174  24.9        8.8      7.4       0.4
## 120 74.474  -20.536     Angela   37 -10.5        7.0      2.1       9.3
## 121 29.567  115.233     Angela   94  20.2       13.5      5.0       4.7
## 122 17.000  -89.000     Angela  371  23.9        8.5      5.9       1.8
## 123 38.217  140.833     Angela   38  12.4        8.0      2.5       8.1
## 124 31.356   34.835     Angela  379  18.9       12.0      4.7       5.0
## 125 12.566  -70.099     Angela  256  24.8       10.5      7.3       1.0
## 126 61.250 -165.500     Angela    1  -1.2        6.8      2.3       8.3
## 127 58.867   25.000     Angela   75   5.1        6.6      2.1       8.2
## 128 51.575  -72.312     Angela  747   3.7        9.7      4.9       3.6
## 129 23.795  133.863     Angela  701  20.9       16.3      4.8       6.0
## 130 12.183  -70.917     Angela  350  24.8       10.8      7.6       0.8
## 131 34.317   19.917     Angela  227  16.4       10.9      5.3       3.4
## 132 29.815  151.121     Angela  686  15.3       14.5      4.9       5.3
## 133 24.786  -99.515     Angela  354  22.6       13.9      4.8       5.1
## 134 34.583   19.917     Angela   71  16.7        8.5      5.1       2.8
## 135 44.683  -63.117     Angela    4   6.4        9.1      2.8       8.0
## 136 34.320  139.503     Angela   95  16.2       13.3      5.1       4.6
## 137 15.933  -47.883     Angela 1100  20.8       11.6      7.2       1.1
## 138 32.310 -110.739     Angela  971  18.9       15.7      4.6       6.9
## 139 13.253   30.047     Angela 1388  19.1       12.7      5.5       2.6
## 140 45.417  -70.000     Angela  500   9.6       11.2      4.6       4.8
## 141 38.867 -122.417     Angela  646  13.5       15.3      4.7       6.0
## 142 28.221   31.794     Angela  161  21.0       11.0      5.9       2.5
## 143 17.917  178.650      Laura   12  24.8        6.3      6.3       1.3
## 144 32.600 -111.233     Angela  690  20.5       17.2      4.6       7.4
## 145 38.867 -106.967     Angela 2698   1.3       17.9      4.0       9.0
## 146 64.769 -148.283     Angela  382  -4.3       10.7      2.2      13.9
## 147 47.533  -61.700     Angela    1   4.9        6.2      2.0       8.2
## 148 33.633 -116.400     Angela  900  16.7       16.6      4.7       6.6
## 149 33.217  -81.750     Angela   54  17.5       14.0      4.2       6.9
## 150 29.867  115.250     Angela   79  20.1       13.3      5.1       4.6
## 151  3.217   35.483     Angela 1550  13.7        8.8      6.5       1.3
## 152 42.679  146.669     Angela  704   7.9        8.8      4.8       3.2
## 153 12.406  130.820     Angela   11  27.5        9.6      6.2       1.5
## 154 30.167  115.233     Angela  274  18.1       12.5      5.1       4.2
## 155 38.010  145.620     Angela  164  13.6       10.5      4.8       3.7
## 156 40.817 -107.783     Angela 2177   4.3       16.9      3.9       9.0
## 157 39.083  -96.583     Angela  407  12.0       12.7      3.0      10.0
## 158  2.983  102.300     Angela  116  26.5        9.5      8.5       0.5
## 159 60.000   27.000     Angela   75   4.5        7.1      2.2       8.7
## 160 23.533  133.748     Angela  713  20.4       16.0      4.8       6.1
## 161 23.533  133.748     Angela  713  20.4       16.0      4.8       6.1
## 162 41.667  -71.250     Angela   44  10.1       10.0      2.9       8.4
## 163 61.600    7.500     Angela 1520  -2.1        6.2      2.8       5.4
## 164 43.033  171.750     Angela  587   9.1        9.0      4.6       3.6
## 165 21.960  101.200     Angela  749  21.0       11.9      5.3       3.3
## 166 49.867   10.450     Angela  415   8.0        8.9      3.2       6.7
## 167 34.550 -116.883     Angela  920  16.6       16.6      4.5       7.1
## 168 59.333   16.850     Angela   33   6.2        7.3      2.5       7.3
## 169 43.533  171.550     Angela 1070   7.8        9.4      4.5       3.9
## 170 41.417    2.100     Angela  314  15.3        7.0      3.1       5.3
## 171  2.500  -60.000     Angela  111  27.0        8.6      8.3       0.4
## 172 38.750  -96.583     Angela  407  12.1       12.8      3.0       9.9
## 173 17.472  178.847      Laura   41  25.0        6.3      6.4       1.2
## 174 14.967  143.583     Angela   85  26.0       12.4      6.2       2.3
## 175 17.846  178.706      Laura    8  24.9        6.3      6.4       1.3
## 176 33.200   26.367     Angela  614  16.7       13.6      5.9       3.1
## 177 63.817   20.267     Angela   21   2.7        8.5      2.4       8.9
## 178 46.500    7.000     Angela 1608   3.5        7.5      3.0       6.0
##     temp.max.warm temp.min.cold temp.ann.range temp.mean.wetqr temp.mean.dryqr
## 1            27.0           0.3           26.7             4.9            17.4
## 2            31.2          16.7           14.5            25.1            23.2
## 3            37.0           3.6           33.4            28.1            14.8
## 4            30.7           8.7           22.0            13.6            25.3
## 5            28.6          -9.5           38.1            21.6            -3.3
## 6            29.0          15.5           13.5            25.4            20.4
## 7            26.1           5.5           20.6            21.2            12.3
## 8            30.6          25.2            5.4            27.9            27.5
## 9            32.9          -2.6           35.5            15.6            21.5
## 10           29.9          23.2            6.7            26.8            25.7
## 11           21.2          -9.0           30.2             6.5            -1.6
## 12           31.9          17.8           14.1            27.2            22.8
## 13           25.3          14.6           10.7            21.1            17.4
## 14           31.1          23.7            7.4            27.2            27.2
## 15           30.0          20.1            9.9            26.1            23.0
## 16           30.1           3.6           26.5            12.3            22.8
## 17           28.5          11.0           17.5            23.4            17.2
## 18           30.3          20.1           10.2            26.5            23.2
## 19           28.9          18.8           10.1            25.1            21.7
## 20           24.2           4.0           20.2             9.6            17.7
## 21           32.5          20.8           11.7            25.9            26.4
## 22           23.5          -7.3           30.8            -1.5            13.1
## 23           31.5          20.4           11.1            25.4            25.9
## 24           35.2           5.0           30.2            26.7            13.6
## 25           30.1          20.1           10.0            26.5            23.3
## 26           32.5          21.6           10.9            27.5            25.7
## 27           30.2          20.4            9.8            26.5            23.4
## 28           30.4          20.9            9.5            26.8            23.9
## 29           31.2          22.1            9.1            25.7            26.4
## 30           29.1           7.3           21.8            22.5            11.2
## 31           29.8          19.1           10.7            25.7            22.3
## 32           33.8          10.8           23.0            18.2            23.1
## 33           27.3           6.3           21.0            12.2            20.2
## 34           27.7           2.6           25.1             7.5            18.6
## 35           31.7           8.5           23.2            13.5            23.5
## 36            6.0         -26.5           32.5            -4.3            -7.4
## 37           31.8          -2.4           34.2            24.6            10.2
## 38           21.2         -12.2           33.4            13.5            -3.6
## 39           32.9           7.2           25.7            23.5            15.2
## 40           24.5           2.7           21.8            13.7            17.0
## 41           31.4          22.2            9.2            25.8            26.6
## 42           30.1          15.7           14.4            27.2            18.5
## 43           21.3         -20.8           42.1            10.5             4.0
## 44           30.5          21.9            8.6            25.6            25.7
## 45           30.4          21.1            9.3            26.8            24.0
## 46           29.8          20.1            9.7            26.1            23.0
## 47           31.2           7.2           24.0            11.7            22.7
## 48           32.2          20.7           11.5            26.2            26.8
## 49           27.8           5.8           22.0            10.9            20.2
## 50           34.0          17.8           16.2            26.6            25.8
## 51           34.6          17.2           17.4            28.1            24.7
## 52           31.7          12.9           18.8            27.1            20.3
## 53           14.8          -4.4           19.2            -0.1             8.9
## 54            8.3         -20.7           29.0             1.2           -16.2
## 55           21.8         -10.2           32.0            10.6            -5.7
## 56           26.1           5.9           20.2            21.4            12.6
## 57           19.0         -14.2           33.2            13.3            -8.6
## 58           30.7           4.8           25.9            11.1            21.8
## 59           30.2          20.6            9.6            26.6            23.6
## 60           29.5           2.9           26.6            18.8            10.6
## 61           31.5          17.4           14.1            25.6            23.3
## 62           30.0          19.7           10.3            26.0            22.9
## 63           31.0           5.7           25.3            13.2            23.2
## 64           24.4           4.0           20.4             9.6            17.7
## 65           33.6          16.0           17.6            27.7            25.2
## 66           29.6           4.4           25.2            11.3            21.4
## 67           14.1         -21.2           35.3             6.3           -13.7
## 68           30.6          15.4           15.2            23.5            23.9
## 69           31.6          18.5           13.1            24.4            24.8
## 70           27.7          18.3            9.4            23.8            21.0
## 71           14.5          -9.5           24.0             6.0            -0.6
## 72           14.0          -5.6           19.6             3.5             4.2
## 73           30.3           4.9           25.4             9.8            22.9
## 74           28.9          13.0           15.9            23.4            20.0
## 75           30.4          20.9            9.5            26.8            23.9
## 76           22.4         -26.7           49.1            14.7           -10.5
## 77           24.1           4.0           20.1             9.6            17.7
## 78           31.6          12.8           18.8            27.0            20.2
## 79           29.5           2.8           26.7            22.6            10.5
## 80           34.4          18.7           15.7            26.5            25.7
## 81           29.9          22.5            7.4            25.9            26.0
## 82           21.8          -4.8           26.6            15.3             1.0
## 83           25.9           6.4           19.5            10.5            19.3
## 84           27.2          10.3           16.9            22.1            16.5
## 85           31.4          17.2           14.2            25.5            23.2
## 86           14.6         -14.1           28.7             8.1            -6.7
## 87           23.5          -7.3           30.8            -1.5            13.1
## 88           29.3          20.0            9.3            25.6            22.8
## 89           30.0          15.2           14.8            27.1            18.0
## 90           19.6           2.2           17.4             6.5            13.8
## 91           33.2          18.5           14.7            27.7            24.8
## 92           19.9           0.1           19.8            10.6             9.9
## 93           25.8          -5.7           31.5            19.9             1.4
## 94           30.2          21.0            9.2            26.5            23.8
## 95           14.1         -21.2           35.3             6.3           -13.7
## 96           25.4          -1.6           27.0             2.9            16.8
## 97           30.7           6.2           24.5            23.4            14.4
## 98           30.2          20.4            9.8            26.5            23.3
## 99           29.8           6.0           23.8            23.6            14.6
## 100          26.0           5.7           20.3            21.3            12.4
## 101          34.6          17.2           17.4            28.1            24.7
## 102          18.9           3.5           15.4             7.6            14.0
## 103          31.4          17.2           14.2            25.4            23.2
## 104          20.6         -31.4           52.0            12.7           -15.0
## 105          27.6          -9.5           37.1            10.3            -3.0
## 106          30.1          20.1           10.0            26.2            23.2
## 107          29.3           7.5           21.8            20.2            15.0
## 108          14.8         -13.7           28.5             8.3            -6.4
## 109          20.3          -2.6           22.9             1.7            12.4
## 110          30.2          19.9           10.3            26.1            23.1
## 111          22.8           6.2           16.6            10.2            17.6
## 112          29.6          -4.5           34.1            20.6            13.4
## 113          27.7          -3.6           31.3            17.3             6.9
## 114          24.4           2.6           21.8            13.7            17.0
## 115          17.5           0.1           17.4             4.0            11.4
## 116          28.7          16.8           11.9            25.3            20.4
## 117          30.2          20.5            9.7            26.6            23.5
## 118          41.7           4.5           37.2            15.5            25.7
## 119          31.4          19.6           11.8            24.8            25.4
## 120           6.5         -25.8           32.3            -3.7            -6.8
## 121          35.2           8.7           26.5            15.7            24.0
## 122          30.7          16.4           14.3            23.9            23.3
## 123          28.4          -2.4           30.8            22.9             2.3
## 124          31.8           6.4           25.4            12.1            24.7
## 125          31.4          17.2           14.2            25.6            23.3
## 126          13.8         -15.3           29.1             9.1            -8.7
## 127          20.9          -9.2           30.1             6.1            -1.8
## 128          14.0          -5.6           19.6             3.5             4.2
## 129          37.0           3.6           33.4            28.1            14.8
## 130          31.4          17.3           14.1            25.2            23.6
## 131          26.7           6.2           20.5            12.0            20.5
## 132          29.3           0.1           29.2            21.8             8.2
## 133          36.2           7.6           28.6            26.0            15.6
## 134          25.0           8.5           16.5            13.2            20.1
## 135          22.5          -9.5           32.0            -0.8            13.4
## 136          30.7           4.8           25.9            13.0            21.9
## 137          27.9          11.8           16.1            21.3            19.3
## 138          36.3           2.5           33.8            27.2            22.2
## 139          30.1           7.3           22.8            20.9            15.1
## 140          22.6          -1.3           23.9             3.9            15.6
## 141          32.8           0.5           32.3             6.5            21.4
## 142          29.3          10.7           18.6            23.9            17.4
## 143          30.1          20.1           10.0            26.2            23.2
## 144          39.2           2.6           36.6            29.5            23.8
## 145          23.6         -20.9           44.5           -10.6             5.6
## 146          21.0         -27.1           48.1            13.2           -12.1
## 147          20.4         -10.2           30.6            -1.8            11.8
## 148          36.3           1.5           34.8             9.9            22.6
## 149          33.4           0.6           32.8            26.1            13.0
## 150          35.0           9.0           26.0            14.7            26.0
## 151          20.4           6.9           13.5            14.8            12.2
## 152          18.2           0.0           18.2             4.2            12.0
## 153          33.9          18.5           15.4            28.2            25.2
## 154          31.9           7.7           24.2            13.1            21.5
## 155          25.7           4.2           21.5            11.1            18.4
## 156          27.7         -15.5           43.2             3.4            -7.3
## 157          32.3          -9.1           41.4            22.1            -1.4
## 158          32.2          21.1           11.1            26.1            26.6
## 159          21.5         -10.5           32.0            10.2            -6.0
## 160          36.3           3.1           33.2            26.6            14.2
## 161          36.3           3.1           33.2            26.6            14.2
## 162          27.4          -6.5           33.9             1.8            18.3
## 163          10.0         -11.7           21.7            -4.9             0.1
## 164          19.1          -0.3           19.4             8.8            12.2
## 165          30.5           8.4           22.1            23.9            17.5
## 166          22.9          -4.1           27.0            16.5             0.5
## 167          36.9           0.4           36.5             9.3            23.3
## 168          21.7          -6.6           28.3            14.7             0.2
## 169          18.5          -2.0           20.5             5.5            12.5
## 170          27.2           5.2           22.0            16.3            22.2
## 171          32.5          22.2           10.3            26.6            27.4
## 172          32.4          -9.0           41.4            22.1            -1.3
## 173          30.1          20.4            9.7            26.4            23.3
## 174          35.1          15.1           20.0            27.8            23.4
## 175          30.1          20.3            9.8            26.5            23.3
## 176          27.4           4.6           22.8            20.6            13.1
## 177          20.7         -13.8           34.5            13.1            -4.2
## 178          16.5          -7.9           24.4            -4.1             4.6
##     temp.mean.warmqr temp.mean.coldqr rain rain.wetm rain.drym rain.seas
## 1               17.6              4.5 1208       217        13        69
## 2               25.3             23.1 3015       416        99        45
## 3               28.1             12.8  278        37         9        42
## 4               25.7             13.6  598       159         0       115
## 5               21.6             -3.3  976       104        44        23
## 6               25.4             19.7 1387       216        59        46
## 7               21.4             11.5 1283       157        63        29
## 8               27.9             27.5 2585       300        82        34
## 9               26.1              3.8 1262       129        66        18
## 10              27.1             25.5 1704       309        16        66
## 11              16.1             -5.0  664        77        31        28
## 12              27.5             22.3 2087       459        26        93
## 13              21.1             17.3 3191       412       160        31
## 14              27.5             26.9 3031       368       144        31
## 15              26.3             23.0 2770       381       118        37
## 16              23.1              8.6  355        43         5        44
## 17              23.4             17.2  926       129        32        43
## 18              26.5             23.0 1831       278        76        41
## 19              25.1             21.7 2814       379       126        35
## 20              18.1              9.6  598       120         2        87
## 21              27.2             24.8 2110       287        49        45
## 22              13.1             -2.1 1427       246        23        65
## 23              26.4             25.1 2012       255       102        30
## 24              27.3             12.1  338        44        16        28
## 25              26.5             23.2 2767       390       113        38
## 26              27.7             25.6 1184       201        33        60
## 27              26.5             23.4 2664       384       103        40
## 28              26.8             23.9 2494       362        88        44
## 29              27.3             25.5 2607       390        29        56
## 30              25.4             11.2 3042       521       137        39
## 31              26.0             22.2 2314       316       119        34
## 32              27.6             17.0  216        50         0        83
## 33              20.3             11.5 1052       160        29        59
## 34              18.6              7.5  723        92        32        36
## 35              23.9             13.5  762       160         8        84
## 36               1.7            -21.4  252        27        11        22
## 37              24.6              4.8 1150       113        81        12
## 38              15.2             -8.1  637        84        33        29
## 39              25.4             15.2  703       149        14        71
## 40              18.3              7.4  214        28         9        35
## 41              27.5             25.6 2542       383        27        56
## 42              27.7             18.5 1315       151        52        27
## 43              11.0            -10.8  526        53        30        16
## 44              26.3             25.4 2315       253       147        14
## 45              26.8             24.0 2462       356        83        45
## 46              26.1             23.0 2660       382       103        41
## 47              23.1             11.7 1003       213        13        85
## 48              27.1             25.1 3991       481       162        30
## 49              20.3             10.9  384        45        18        29
## 50              27.5             23.7 3048       515        57        68
## 51              29.2             24.7 1505       371         1       104
## 52              27.3             19.4 1027       251         9       101
## 53               8.9             -0.7 2043       204       105        16
## 54               4.3            -16.2  305        38        16        30
## 55              16.1             -6.3  599        77        26        34
## 56              21.5             11.9 1307       159        64        29
## 57              13.3             -8.6 2142       303        63        51
## 58              22.0             10.4  276        31        15        23
## 59              26.6             23.6 2576       375        96        42
## 60              20.7             10.6  281        36        17        22
## 61              25.7             23.3 3273       471       113        46
## 62              26.3             22.7 2674       345       132        32
## 63              23.2             12.4  583        94        11        63
## 64              18.0              9.6  630       127         2        86
## 65              28.0             23.9  790       215         1       110
## 66              21.4             11.3  546        87        14        60
## 67               8.1            -16.6  257        31        11        33
## 68              24.9             20.0 2726       506        56        66
## 69              25.6             24.1 1649       224        43        40
## 70              23.8             21.0 2865       383       111        40
## 71               9.6             -6.2  788        95        41        25
## 72               8.0             -1.2  500        57        34        15
## 73              22.9              9.8  420       103         0       106
## 74              23.7             17.9 1741       365        27        86
## 75              26.8             23.9 2494       362        88        44
## 76              14.7            -21.0  301        54         8        57
## 77              18.0              9.6  603       121         2        86
## 78              27.2             19.3 1036       253         9       101
## 79              22.6             10.5  706        92        32        35
## 80              27.4             25.7 1661       261        14        66
## 81              26.3             25.7 3612       356       238        14
## 82              16.4             -1.7  508        61        24        28
## 83              19.3             10.5  682        96        22        47
## 84              22.1             16.2  964       139        28        49
## 85              25.6             23.2 3283       472       113        45
## 86               9.1            -10.1  436        66        19        38
## 87              13.1             -2.1 1427       246        23        65
## 88              25.6             22.8 2567       351        95        42
## 89              27.6             18.0 1327       151        53        26
## 90              13.8              5.9 1037       115        63        17
## 91              28.5             24.8 1664       355         2       100
## 92              15.7              2.9  781        88        42        25
## 93              20.1             -1.2 1975       288       102        37
## 94              26.5             23.8 2444       343        84        44
## 95               8.1            -16.6  257        31        11        33
## 96              16.9              2.4 2561       458        21        71
## 97              24.2             14.4  793       162         4        89
## 98              26.5             23.3 2662       386       103        40
## 99              23.6             12.9  882       184        10        82
## 100             21.4             11.7 1313       160        65        29
## 101             29.2             24.7 1505       371         1       104
## 102             14.4              7.2 1936       315        27        62
## 103             25.6             23.2 3283       471       113        45
## 104             12.7            -25.5  244        45         7        59
## 105             20.2             -3.9  996        96        62        13
## 106             26.4             23.0 2803       390       117        37
## 107             20.9             15.0 1099       270         0       118
## 108              9.3             -9.7  422        64        18        39
## 109             12.4              1.7  972       175        28        56
## 110             26.4             22.9 2993       372       150        30
## 111             17.6              9.5  915       101        45        25
## 112             22.4              2.3 1121       117        71        12
## 113             18.0              3.8  208        23        13        17
## 114             18.3              7.4  214        28         9        35
## 115             11.4              3.6 1720       182        72        23
## 116             25.3             20.0 1397       235        37        57
## 117             26.6             23.5 2598       378       100        41
## 118             31.9             13.9   73        12         0        51
## 119             25.4             24.3 3329       503        78        47
## 120              2.3            -20.7  236        26        10        24
## 121             26.5             14.5  475       108         7        84
## 122             25.9             21.4 1545       214        54        46
## 123             22.9              2.3 1263       181        50        43
## 124             24.7             12.1  293        69         0       106
## 125             25.7             23.3 3269       470       112        45
## 126              9.6            -11.1  657       133        24        61
## 127             15.7             -5.1  691        78        34        28
## 128              8.0             -1.2  500        57        34        15
## 129             28.1             12.7  278        37         9        42
## 130             25.6             23.6 2920       397        99        43
## 131             20.5             12.0  501        63        24        29
## 132             21.8              8.2  780       105        37        33
## 133             28.5             15.6  803       154        20        66
## 134             20.2             13.2  484        59        20        34
## 135             16.5             -3.8 1379       149        91        16
## 136             22.0             10.5  272        30        15        23
## 137             21.7             19.0 1698       301         7        78
## 138             27.9             10.4  380        71         6        61
## 139             21.7             15.1 1085       265         0       118
## 140             15.6              3.3  174        23         7        35
## 141             21.4              6.5  867       182         1        88
## 142             23.9             17.4  834       116        25        47
## 143             26.4             23.0 2835       401       116        37
## 144             30.0             11.4  354        57         8        50
## 145             12.6            -10.6  539        60        28        20
## 146             13.2            -21.9  296        57         7        68
## 147             15.6             -5.4  977       110        64        18
## 148             25.4              8.9  290        46         2        57
## 149             26.1              8.2 1165       123        63        19
## 150             26.4             14.7  520       117         5        83
## 151             14.8             11.7 1019       192         9        73
## 152             12.0              3.7 1156       117        54        20
## 153             29.1             25.2 1663       428         1       106
## 154             23.8             13.1  597       132         6        83
## 155             18.4              8.8 1016       107        52        20
## 156             15.9             -7.3  374        37        23        13
## 157             24.5             -1.4  872       137        20        51
## 158             27.1             25.8 1974       254       103        30
## 159             15.8             -6.6  597        78        26        34
## 160             27.5             12.1  310        41        11        42
## 161             27.5             12.1  310        41        11        42
## 162             20.9             -0.8 1176       117        81        11
## 163              5.2             -8.5 1418       159        71        23
## 164             13.6              4.3 2421       247       131        15
## 165             24.3             16.1 1476       275        20        74
## 166             16.5             -0.7  692        80        43        18
## 167             25.9              8.1  212        34         2        60
## 168             15.9             -2.8  564        70        27        29
## 169             12.6              2.6 1211       120        71        12
## 170             22.4              8.9  656        85        30        26
## 171             27.6             26.5 2319       299       108        31
## 172             24.5             -1.3  859       133        20        49
## 173             26.4             23.3 2616       379       100        41
## 174             28.4             22.7 1117       290         2       113
## 175             26.5             23.2 2731       394       109        39
## 176             20.6             12.5  630        73        28        27
## 177             14.5             -8.6  572        70        32        26
## 178             11.1             -4.1 1555       155       112        10
##     rain.wetqr rain.dryqr rain.warmqr rain.coldqr  LAI  NPP hemisphere
## 1          601         68          75         560 2.51  572          1
## 2         1177        340         928         359 4.26 1405         -1
## 3          109         35         109          42 1.32  756         -1
## 4          408          0           2         408 1.01  359          1
## 5          299        165         299         165 3.26 1131          1
## 6          600        186         600         212 6.99 1552         -1
## 7          450        208         385         279 4.14 1563         -1
## 8          870        305         855         405   NA   NA          1
## 9          382        249         268         325 3.14 1266          1
## 10         806         92         659         135 4.51 2296         -1
## 11         220        106         191         137 3.07  536          1
## 12        1294         92        1031         108 4.04  908         -1
## 13        1136        521        1136         523 4.26 1795         -1
## 14        1055        436         689         489   NA   NA          1
## 15        1006        391        1005         391 4.51 1864         -1
## 16         121         27          33         114 2.79  991          1
## 17         347        104         344         104 3.35  525         -1
## 18         724        257         724         270 4.50 1800         -1
## 19        1027        413        1027         413 4.26 1795         -1
## 20         311          9          13         311 1.51  223          1
## 21         735        217         458         542 4.51 1857          1
## 22         692        106         106         642 2.07  478          1
## 23         719        327         486         652 4.51 2270          1
## 24         116         67         100          68 2.07  490         -1
## 25        1012        379        1012         381 4.51 1864         -1
## 26         556        117         486         123 3.26  907         -1
## 27        1011        349        1011         349 4.51 1864         -1
## 28        1003        298        1003         298 4.26 1886         -1
## 29        1026        138         407         705 4.51 2146          1
## 30        1117        495         837         495 4.26 1335          1
## 31         836        372         834         384 4.51 1864         -1
## 32         127          5          54         108 1.51  464         -1
## 33         468         95          98         459 2.01  517         -1
## 34         259        102         102         259 2.26  698         -1
## 35         426         33          39         426 1.51  575         -1
## 36          76         40          60          68 2.60    4          1
## 37         325        252         325         277 3.26 1274          1
## 38         221        104         209         129 2.76  477          1
## 39         325         54         268          54 2.26  844          1
## 40          77         36          37          55 1.01  404         -1
## 41        1004        132         397         975 4.51 2146          1
## 42         414        195         394         195   NA   NA          1
## 43         148        105         134         144 2.24  339          1
## 44         692        512         515         670 4.51 2246          1
## 45        1007        284        1007         284 4.26 1886         -1
## 46        1023        345        1023         345 4.50 1800         -1
## 47         566         50          54         566 1.93  708         -1
## 48        1281        581         741        1206 4.51 2132          1
## 49         127         59          60         127 2.17  661         -1
## 50        1422        195         680         304 4.51 1809          1
## 51         970          7         408           7 4.07  956         -1
## 52         668         33         626          42 4.14 1012         -1
## 53         582        388         388         580 4.26 1102         -1
## 54         106         52          87          52 1.01   32          1
## 55         217         90         185         105 1.01  386          1
## 56         455        212         391         280 4.51 1435         -1
## 57         885        204         885         204 3.26  751          1
## 58          84         49          51          80 2.14  773         -1
## 59        1003        325        1003         325 4.50 1800         -1
## 60          92         55          71          55 1.26  255         -1
## 61        1310        381        1001         381 4.26 1475         -1
## 62         943        414         925         431 4.26 1795         -1
## 63         271         48          48         266 1.51  633         -1
## 64         328          9          13         328 1.51  223          1
## 65         546         12         403          29 4.07  855          1
## 66         253         48          48         253 1.51  557         -1
## 67          92         40          84          45 1.29   65          1
## 68        1248        198         463         371 4.14  991          1
## 69         603        177         352         504 4.26 1648          1
## 70        1110        374        1110         374 4.50 1800         -1
## 71         260        132         213         193 1.51  121          1
## 72         152        106         120         122 1.26   30         -1
## 73         265          0           0         265 1.26  305          1
## 74        1031         92         868         116 4.04  908         -1
## 75        1003        298        1003         298 4.26 1886         -1
## 76         144         31         144          47 2.51  317          1
## 77         313          9          13         313 1.51  223          1
## 78         674         33         631          43 4.14 1012         -1
## 79         258        111         258         111 2.51 1119         -1
## 80         759         64         375         120 4.07 1225         -1
## 81        1050        761         881         838 4.51 2337          1
## 82         172         81         162         112 2.79  533          1
## 83         272         75          75         272 2.14  695         -1
## 84         372         97         371          97 3.35  525         -1
## 85        1313        383        1004         383 4.26 1475         -1
## 86         172         65         162          89 1.24   61          1
## 87         692        106         106         642 2.07  478          1
## 88        1009        324        1009         324 4.50 1800         -1
## 89         409        196         382         196   NA   NA          1
## 90         311        205         205         296 2.82  743         -1
## 91        1032         12         453          12 4.04  969         -1
## 92         256        139         200         184 3.46  733          1
## 93         721        331         706         349 4.14 1106          1
## 94         989        288         989         288 4.50 1800         -1
## 95          92         40          84          45 1.29   65          1
## 96        1278        125         142        1214 1.76  579          1
## 97         455         20         439          20 2.42  476         -1
## 98        1008        350        1008         350 4.50 1800         -1
## 99         472         33         472          34 1.51  596         -1
## 100        458        213         392         283 4.51 1435         -1
## 101        970          7         408           7 4.07  956         -1
## 102        900        133         134         848 2.51  572          1
## 103       1312        383        1004         383 4.26 1475         -1
## 104        122         28         122          38 2.07  192          1
## 105        275        200         271         213 3.14  972          1
## 106       1017        389        1013         393 4.51 1864         -1
## 107        790          0         383           0 2.51  684         -1
## 108        168         62         158          85 1.24   61          1
## 109        443        106         106         443 4.14  691         -1
## 110       1025        468         969         483 4.51 1864         -1
## 111        289        150         150         287 4.04 1023         -1
## 112        322        240         310         265 4.07 1325          1
## 113         65         44          61          47 1.89  522         -1
## 114         77         36          37          55 1.01  404         -1
## 115        530        280         280         495 2.96  643         -1
## 116        650        137         650         172   NA   NA         -1
## 117        994        339         994         339 4.50 1800         -1
## 118         31          4          10          30 1.51  415          1
## 119       1245        304         328        1054 4.51 1896          1
## 120         73         36          57          63 2.60    4          1
## 121        267         27          32         267 1.99  411         -1
## 122        616        163         319         256 4.51 1761          1
## 123        506        162         506         162 3.57  932          1
## 124        186          0           0         186 1.26  305          1
## 125       1308        380        1001         397 4.26 1475         -1
## 126        313         85         256          90 2.15  204          1
## 127        225        112         202         144 2.76  474          1
## 128        152        106         120         122 1.26   30         -1
## 129        109         35         109          42 1.32  756         -1
## 130       1125        336         891         350 4.26 1461         -1
## 131        171         81          89         171 2.14  825         -1
## 132        287        133         287         133 3.26 1272         -1
## 133        338         68         285          68 2.26 1044          1
## 134        176         67          77         176 2.14  825         -1
## 135        432        294         296         400 3.26  711          1
## 136         83         49          50          79 2.14  773         -1
## 137        853         33         472          49 4.26 1180         -1
## 138        176         24         144          98 1.01  477          1
## 139        778          0         383           0 4.03  652         -1
## 140         65         25          25          57 2.42  505         -1
## 141        469         11          11         469 2.14  595          1
## 142        321         84         309          84 3.35  525         -1
## 143       1026        385        1019         398 4.51 1864         -1
## 144        143         29         117          97 1.26  349          1
## 145        166        100         123         166 2.24  339          1
## 146        157         28         157          41 2.51  363          1
## 147        308        201         222         239   NA   NA          1
## 148        129         22          50         126 1.01  492          1
## 149        358        220         358         297 3.35 1415          1
## 150        292         29          30         292 1.67   75         -1
## 151        451         33         451          44 3.48 1209         -1
## 152        347        200         200         322 2.96  643         -1
## 153       1091         10         428          10 4.07  956         -1
## 154        333         34          38         333 1.67   75         -1
## 155        313        176         176         275 2.71  793         -1
## 156        106         77          93          77 0.51  261          1
## 157        355         71         326          71 4.14 1414          1
## 158        710        324         524         633 4.51 2270          1
## 159        216         90         184         106 2.82  502          1
## 160        121         40         121          46 1.01  605         -1
## 161        121         40         121          46 1.01  605         -1
## 162        332        256         262         311 3.39 1044          1
## 163        446        244         337         399 1.01   45          1
## 164        704        502         537         580 1.46   41         -1
## 165        753         67         616          73 4.04 1435          1
## 166        218        143         218         155 3.57  827          1
## 167         97         16          19          95 1.26  279          1
## 168        197         90         188         116 3.07  615          1
## 169        339        259         266         326 1.26   30         -1
## 170        221        132         160         134 2.26  826          1
## 171        803        352         415         718 4.26 1692         -1
## 172        338         73         310          73 2.76 1127          1
## 173       1012        335        1012         335 4.50 1800         -1
## 174        767          9         501          13 4.03  811         -1
## 175       1011        365        1011         371 4.51 1864         -1
## 176        197         98         197         104 1.76  933         -1
## 177        189         99         168         128 2.79  414          1
## 178        438        359         385         438 3.26  690          1
fullModel <- lm(loght ~ (growthform + Family + lat + long + alt + temp + NPP )^2, data = plantHeight)
selectedModel = stepAIC(fullModel)
## Start:  AIC=-786.71
## loght ~ (growthform + Family + lat + long + alt + temp + NPP)^2
## 
## 
## Step:  AIC=-786.71
## loght ~ growthform + Family + lat + long + alt + temp + NPP + 
##     growthform:Family + growthform:lat + growthform:long + growthform:alt + 
##     growthform:temp + growthform:NPP + Family:lat + Family:long + 
##     Family:alt + Family:temp + lat:long + lat:alt + lat:temp + 
##     lat:NPP + long:alt + long:temp + long:NPP + alt:temp + alt:NPP + 
##     temp:NPP
## 
## 
## Step:  AIC=-786.71
## loght ~ growthform + Family + lat + long + alt + temp + NPP + 
##     growthform:Family + growthform:lat + growthform:long + growthform:alt + 
##     growthform:NPP + Family:lat + Family:long + Family:alt + 
##     Family:temp + lat:long + lat:alt + lat:temp + lat:NPP + long:alt + 
##     long:temp + long:NPP + alt:temp + alt:NPP + temp:NPP
## 
## 
## Step:  AIC=-786.71
## loght ~ growthform + Family + lat + long + alt + temp + NPP + 
##     growthform:Family + growthform:lat + growthform:long + growthform:NPP + 
##     Family:lat + Family:long + Family:alt + Family:temp + lat:long + 
##     lat:alt + lat:temp + lat:NPP + long:alt + long:temp + long:NPP + 
##     alt:temp + alt:NPP + temp:NPP
## 
##                     Df Sum of Sq     RSS     AIC
## - lat:alt            1  0.000009 0.19505 -788.71
## - alt:NPP            1  0.000838 0.19588 -788.01
## - long:alt           1  0.000979 0.19602 -787.90
## <none>                           0.19504 -786.71
## - lat:NPP            1  0.002655 0.19770 -786.51
## - growthform:Family  1  0.004059 0.19910 -785.36
## - growthform:long    1  0.004503 0.19954 -784.99
## - temp:NPP           1  0.008428 0.20347 -781.82
## - lat:long           1  0.012808 0.20785 -778.35
## - alt:temp           1  0.034897 0.22994 -761.88
## - growthform:NPP     2  0.055667 0.25071 -749.79
## - long:temp          1  0.054907 0.24995 -748.28
## - long:NPP           1  0.069899 0.26494 -738.79
## - growthform:lat     1  0.072656 0.26770 -737.10
## - Family:lat         2  0.180837 0.37588 -683.78
## - Family:alt         3  0.203022 0.39806 -676.43
## - Family:temp        3  0.209489 0.40453 -673.80
## - lat:temp           1  0.231841 0.42688 -661.03
## - Family:long        2  0.285742 0.48078 -643.65
## 
## Step:  AIC=-788.71
## loght ~ growthform + Family + lat + long + alt + temp + NPP + 
##     growthform:Family + growthform:lat + growthform:long + growthform:NPP + 
##     Family:lat + Family:long + Family:alt + Family:temp + lat:long + 
##     lat:temp + lat:NPP + long:alt + long:temp + long:NPP + alt:temp + 
##     alt:NPP + temp:NPP
## 
##                     Df Sum of Sq     RSS     AIC
## - alt:NPP            1   0.00095 0.19600 -789.91
## - long:alt           1   0.00158 0.19663 -789.39
## <none>                           0.19505 -788.71
## - lat:NPP            1   0.00444 0.19949 -787.04
## - growthform:Family  1   0.00448 0.19953 -787.00
## - growthform:long    1   0.00481 0.19985 -786.74
## - temp:NPP           1   0.01041 0.20546 -782.23
## - lat:long           1   0.02765 0.22270 -769.09
## - alt:temp           1   0.05194 0.24699 -752.22
## - growthform:NPP     2   0.05721 0.25226 -750.78
## - long:NPP           1   0.07015 0.26520 -740.62
## - growthform:lat     1   0.09511 0.29016 -725.96
## - long:temp          1   0.10324 0.29829 -721.46
## - Family:temp        3   0.27353 0.46858 -651.84
## - Family:alt         3   0.28127 0.47631 -649.17
## - Family:lat         2   0.27637 0.47142 -648.86
## - lat:temp           1   0.32113 0.51618 -632.07
## - Family:long        2   0.37967 0.57472 -616.56
## 
## Step:  AIC=-789.91
## loght ~ growthform + Family + lat + long + alt + temp + NPP + 
##     growthform:Family + growthform:lat + growthform:long + growthform:NPP + 
##     Family:lat + Family:long + Family:alt + Family:temp + lat:long + 
##     lat:temp + lat:NPP + long:alt + long:temp + long:NPP + alt:temp + 
##     temp:NPP
## 
##                     Df Sum of Sq     RSS     AIC
## <none>                           0.19600 -789.91
## - growthform:long    1   0.00388 0.19988 -788.72
## - growthform:Family  1   0.00578 0.20178 -787.18
## - long:alt           1   0.00727 0.20327 -785.97
## - lat:NPP            1   0.01680 0.21280 -778.51
## - lat:long           1   0.04395 0.23995 -758.94
## - growthform:NPP     2   0.05706 0.25306 -752.26
## - temp:NPP           1   0.08109 0.27709 -735.48
## - growthform:lat     1   0.10167 0.29767 -723.80
## - long:temp          1   0.16119 0.35719 -694.09
## - long:NPP           1   0.16687 0.36287 -691.51
## - alt:temp           1   0.22876 0.42476 -665.85
## - Family:temp        3   0.32442 0.52042 -636.74
## - Family:lat         2   0.31910 0.51510 -636.42
## - Family:alt         3   0.37962 0.57562 -620.31
## - Family:long        2   0.48838 0.68438 -590.10
## - lat:temp           1   0.53630 0.73230 -577.07
summary(selectedModel)
## 
## Call:
## lm(formula = loght ~ growthform + Family + lat + long + alt + 
##     temp + NPP + growthform:Family + growthform:lat + growthform:long + 
##     growthform:NPP + Family:lat + Family:long + Family:alt + 
##     Family:temp + lat:long + lat:temp + lat:NPP + long:alt + 
##     long:temp + long:NPP + alt:temp + temp:NPP, data = plantHeight)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1897  0.0000  0.0000  0.0000  0.1998 
## 
## Coefficients: (521 not defined because of singularities)
##                                                 Estimate Std. Error t value
## (Intercept)                                   -1.612e+01  2.152e+01  -0.749
## growthformHerb                                 1.598e+02  1.822e+02   0.877
## growthformHerb/Shrub                          -2.013e-01  3.854e+00  -0.052
## growthformShrub                               -1.992e+02  2.590e+02  -0.769
## growthformShrub/Tree                          -1.126e+02  1.952e+02  -0.577
## growthformTree                                 2.053e+01  1.530e+01   1.342
## FamilyAsteraceae                              -3.562e+02  1.352e+02  -2.636
## FamilyAtherospermataceae                      -2.866e+01  2.295e+01  -1.248
## FamilyBalsaminaceae                            1.530e+02  1.927e+02   0.794
## FamilyBetulaceae                              -3.010e+01  1.056e+02  -0.285
## FamilyBrassicaceae                            -1.271e+02  1.910e+02  -0.665
## FamilyCactaceae                                2.620e+02  2.820e+02   0.929
## FamilyCasuarinaceae                            1.995e+02  2.582e+02   0.773
## FamilyChloranthaceae                           7.419e-01  9.460e-01   0.784
## FamilyChrysobalanaceae                         5.392e+00  8.314e+00   0.649
## FamilyCistaceae                                1.999e+02  2.586e+02   0.773
## FamilyCornaceae                                3.361e+02  4.220e+02   0.796
## FamilyCrassulaceae                             1.954e+02  2.551e+02   0.766
## FamilyCunoniaceae                              1.716e-01  3.008e-01   0.571
## FamilyCupressaceae                            -3.435e+01  3.185e+01  -1.079
## FamilyCyperaceae                              -1.814e+01  2.054e+01  -0.883
## FamilyDennstaedtiaceae                                NA         NA      NA
## FamilyDicksoniaceae                            1.878e+02  2.490e+02   0.754
## FamilyDipterocarpaceae                         4.334e+00  4.919e+00   0.881
## FamilyEbenaceae                                5.281e+00  5.975e+00   0.884
## FamilyElaeocarpaceae                           5.440e-01  5.242e-01   1.038
## FamilyEricaceae                                2.186e+02  2.792e+02   0.783
## FamilyEuphorbiaceae                            3.472e+00  4.301e+00   0.807
## FamilyFabaceae - C                             2.644e+00  3.387e+00   0.781
## FamilyFabaceae - M                            -2.768e+00  2.238e+00  -1.237
## FamilyFabaceae - P                             5.128e+01  5.128e+01   1.000
## FamilyFagaceae                                -2.036e+00  7.802e+00  -0.261
## FamilyGentianaceae                            -1.963e+02  2.264e+02  -0.867
## FamilyHeliconiaceae                           -1.193e+02  1.413e+02  -0.845
## FamilyJuglandaceae                            -2.223e+01  2.069e+01  -1.074
## FamilyJuncaginaceae                            2.855e+02  3.596e+02   0.794
## FamilyLamiaceae                                1.876e+02  2.522e+02   0.744
## FamilyLauraceae                               -2.595e+00  4.184e+00  -0.620
## FamilyMaesaceae                                2.097e+02  2.652e+02   0.791
## FamilyMalvaceae                                3.153e+00  4.933e+00   0.639
## FamilyMelastomataceae                          2.135e+02  2.701e+02   0.790
## FamilyMoraceae                                -5.805e+00  6.329e+00  -0.917
## FamilyMyristicaceae                            8.819e-01  8.987e-01   0.981
## FamilyMyrsinaceae                             -9.893e+00  1.109e+01  -0.892
## FamilyMyrtaceae                               -3.193e+01  1.040e+01  -3.070
## FamilyOchnaceae                                2.125e+02  2.692e+02   0.789
## FamilyOnagraceae                                      NA         NA      NA
## FamilyOrobanchaceae                           -1.075e+02  1.752e+02  -0.613
## FamilyPhyllanthaceae                          -1.211e+01  1.357e+01  -0.892
## FamilyPicrodendraceae                         -1.256e+01  1.307e+01  -0.961
## FamilyPinaceae                                 1.522e+01  8.029e+00   1.895
## FamilyPoaceae                                  1.059e+02  1.625e+02   0.652
## FamilyPolemoniaceae                           -1.369e+02  1.613e+02  -0.849
## FamilyPolygonaceae                            -1.292e+02  1.622e+02  -0.796
## FamilyProteaceae                               1.685e+01  9.511e+00   1.772
## FamilyRanunculaceae                            1.136e+02  1.438e+02   0.790
## FamilyRhamnaceae                               1.944e+02  2.570e+02   0.756
## FamilyRosaceae                                 1.148e+01  3.983e+00   2.883
## FamilyRubiaceae                                2.165e+02  2.702e+02   0.801
## FamilyRutaceae                                 1.979e+02  2.555e+02   0.774
## FamilySalicaceae                               2.326e+02  2.849e+02   0.816
## FamilySapindaceae                              4.753e+00  8.974e+00   0.530
## FamilySapotaceae                              -1.511e+01  1.313e+01  -1.151
## FamilyScrophulariaceae                         2.099e+02  2.660e+02   0.789
## FamilyThymelaeaceae                           -9.324e+00  9.227e+00  -1.010
## FamilyUlmaceae                                 1.783e+01  1.401e+01   1.273
## FamilyUrticaceae                               8.939e+00  8.901e+00   1.004
## FamilyViolaceae                                2.145e+02  2.712e+02   0.791
## FamilyXanthorrhoeaceae                         2.016e+02  2.596e+02   0.777
## FamilyZygophyllaceae                           1.871e+02  2.474e+02   0.756
## lat                                            6.678e-01  6.451e-01   1.035
## long                                           6.846e-03  3.808e-02   0.180
## alt                                            5.440e-03  8.816e-03   0.617
## temp                                          -1.851e-01  2.343e-01  -0.790
## NPP                                            2.978e-03  2.716e-03   1.097
## growthformHerb:FamilyAsteraceae               -1.535e+01  4.924e+01  -0.312
## growthformHerb/Shrub:FamilyAsteraceae                 NA         NA      NA
## growthformShrub:FamilyAsteraceae                      NA         NA      NA
## growthformShrub/Tree:FamilyAsteraceae                 NA         NA      NA
## growthformTree:FamilyAsteraceae                       NA         NA      NA
## growthformHerb:FamilyAtherospermataceae               NA         NA      NA
## growthformHerb/Shrub:FamilyAtherospermataceae         NA         NA      NA
## growthformShrub:FamilyAtherospermataceae              NA         NA      NA
## growthformShrub/Tree:FamilyAtherospermataceae         NA         NA      NA
## growthformTree:FamilyAtherospermataceae               NA         NA      NA
## growthformHerb:FamilyBalsaminaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyBalsaminaceae              NA         NA      NA
## growthformShrub:FamilyBalsaminaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyBalsaminaceae              NA         NA      NA
## growthformTree:FamilyBalsaminaceae                    NA         NA      NA
## growthformHerb:FamilyBetulaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyBetulaceae                 NA         NA      NA
## growthformShrub:FamilyBetulaceae               2.035e+02  2.795e+02   0.728
## growthformShrub/Tree:FamilyBetulaceae                 NA         NA      NA
## growthformTree:FamilyBetulaceae                       NA         NA      NA
## growthformHerb:FamilyBrassicaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyBrassicaceae               NA         NA      NA
## growthformShrub:FamilyBrassicaceae                    NA         NA      NA
## growthformShrub/Tree:FamilyBrassicaceae               NA         NA      NA
## growthformTree:FamilyBrassicaceae                     NA         NA      NA
## growthformHerb:FamilyCactaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyCactaceae                  NA         NA      NA
## growthformShrub:FamilyCactaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyCactaceae                  NA         NA      NA
## growthformTree:FamilyCactaceae                        NA         NA      NA
## growthformHerb:FamilyCasuarinaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyCasuarinaceae              NA         NA      NA
## growthformShrub:FamilyCasuarinaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyCasuarinaceae              NA         NA      NA
## growthformTree:FamilyCasuarinaceae                    NA         NA      NA
## growthformHerb:FamilyChloranthaceae                   NA         NA      NA
## growthformHerb/Shrub:FamilyChloranthaceae             NA         NA      NA
## growthformShrub:FamilyChloranthaceae                  NA         NA      NA
## growthformShrub/Tree:FamilyChloranthaceae             NA         NA      NA
## growthformTree:FamilyChloranthaceae                   NA         NA      NA
## growthformHerb:FamilyChrysobalanaceae                 NA         NA      NA
## growthformHerb/Shrub:FamilyChrysobalanaceae           NA         NA      NA
## growthformShrub:FamilyChrysobalanaceae                NA         NA      NA
## growthformShrub/Tree:FamilyChrysobalanaceae           NA         NA      NA
## growthformTree:FamilyChrysobalanaceae                 NA         NA      NA
## growthformHerb:FamilyCistaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyCistaceae                  NA         NA      NA
## growthformShrub:FamilyCistaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyCistaceae                  NA         NA      NA
## growthformTree:FamilyCistaceae                        NA         NA      NA
## growthformHerb:FamilyCornaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyCornaceae                  NA         NA      NA
## growthformShrub:FamilyCornaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyCornaceae                  NA         NA      NA
## growthformTree:FamilyCornaceae                        NA         NA      NA
## growthformHerb:FamilyCrassulaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyCrassulaceae               NA         NA      NA
## growthformShrub:FamilyCrassulaceae                    NA         NA      NA
## growthformShrub/Tree:FamilyCrassulaceae               NA         NA      NA
## growthformTree:FamilyCrassulaceae                     NA         NA      NA
## growthformHerb:FamilyCunoniaceae                      NA         NA      NA
## growthformHerb/Shrub:FamilyCunoniaceae                NA         NA      NA
## growthformShrub:FamilyCunoniaceae                     NA         NA      NA
## growthformShrub/Tree:FamilyCunoniaceae         2.124e+02  2.694e+02   0.789
## growthformTree:FamilyCunoniaceae                      NA         NA      NA
## growthformHerb:FamilyCupressaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyCupressaceae               NA         NA      NA
## growthformShrub:FamilyCupressaceae             2.214e+02  2.802e+02   0.790
## growthformShrub/Tree:FamilyCupressaceae               NA         NA      NA
## growthformTree:FamilyCupressaceae                     NA         NA      NA
## growthformHerb:FamilyCyperaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyCyperaceae                 NA         NA      NA
## growthformShrub:FamilyCyperaceae                      NA         NA      NA
## growthformShrub/Tree:FamilyCyperaceae                 NA         NA      NA
## growthformTree:FamilyCyperaceae                       NA         NA      NA
## growthformHerb:FamilyDennstaedtiaceae                 NA         NA      NA
## growthformHerb/Shrub:FamilyDennstaedtiaceae           NA         NA      NA
## growthformShrub:FamilyDennstaedtiaceae                NA         NA      NA
## growthformShrub/Tree:FamilyDennstaedtiaceae           NA         NA      NA
## growthformTree:FamilyDennstaedtiaceae                 NA         NA      NA
## growthformHerb:FamilyDicksoniaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyDicksoniaceae              NA         NA      NA
## growthformShrub:FamilyDicksoniaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyDicksoniaceae              NA         NA      NA
## growthformTree:FamilyDicksoniaceae                    NA         NA      NA
## growthformHerb:FamilyDipterocarpaceae                 NA         NA      NA
## growthformHerb/Shrub:FamilyDipterocarpaceae           NA         NA      NA
## growthformShrub:FamilyDipterocarpaceae                NA         NA      NA
## growthformShrub/Tree:FamilyDipterocarpaceae           NA         NA      NA
## growthformTree:FamilyDipterocarpaceae                 NA         NA      NA
## growthformHerb:FamilyEbenaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyEbenaceae                  NA         NA      NA
## growthformShrub:FamilyEbenaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyEbenaceae                  NA         NA      NA
## growthformTree:FamilyEbenaceae                        NA         NA      NA
## growthformHerb:FamilyElaeocarpaceae                   NA         NA      NA
## growthformHerb/Shrub:FamilyElaeocarpaceae             NA         NA      NA
## growthformShrub:FamilyElaeocarpaceae                  NA         NA      NA
## growthformShrub/Tree:FamilyElaeocarpaceae             NA         NA      NA
## growthformTree:FamilyElaeocarpaceae                   NA         NA      NA
## growthformHerb:FamilyEricaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyEricaceae                  NA         NA      NA
## growthformShrub:FamilyEricaceae               -1.611e+00  4.441e+00  -0.363
## growthformShrub/Tree:FamilyEricaceae                  NA         NA      NA
## growthformTree:FamilyEricaceae                        NA         NA      NA
## growthformHerb:FamilyEuphorbiaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyEuphorbiaceae              NA         NA      NA
## growthformShrub:FamilyEuphorbiaceae            2.201e+02  2.766e+02   0.796
## growthformShrub/Tree:FamilyEuphorbiaceae              NA         NA      NA
## growthformTree:FamilyEuphorbiaceae                    NA         NA      NA
## growthformHerb:FamilyFabaceae - C                     NA         NA      NA
## growthformHerb/Shrub:FamilyFabaceae - C               NA         NA      NA
## growthformShrub:FamilyFabaceae - C                    NA         NA      NA
## growthformShrub/Tree:FamilyFabaceae - C               NA         NA      NA
## growthformTree:FamilyFabaceae - C                     NA         NA      NA
## growthformHerb:FamilyFabaceae - M                     NA         NA      NA
## growthformHerb/Shrub:FamilyFabaceae - M               NA         NA      NA
## growthformShrub:FamilyFabaceae - M                    NA         NA      NA
## growthformShrub/Tree:FamilyFabaceae - M        2.338e+02  2.857e+02   0.818
## growthformTree:FamilyFabaceae - M                     NA         NA      NA
## growthformHerb:FamilyFabaceae - P              1.161e+02  1.357e+02   0.855
## growthformHerb/Shrub:FamilyFabaceae - P               NA         NA      NA
## growthformShrub:FamilyFabaceae - P             2.457e+02  3.020e+02   0.814
## growthformShrub/Tree:FamilyFabaceae - P               NA         NA      NA
## growthformTree:FamilyFabaceae - P                     NA         NA      NA
## growthformHerb:FamilyFagaceae                         NA         NA      NA
## growthformHerb/Shrub:FamilyFagaceae                   NA         NA      NA
## growthformShrub:FamilyFagaceae                 2.144e+02  2.735e+02   0.784
## growthformShrub/Tree:FamilyFagaceae                   NA         NA      NA
## growthformTree:FamilyFagaceae                         NA         NA      NA
## growthformHerb:FamilyGentianaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyGentianaceae               NA         NA      NA
## growthformShrub:FamilyGentianaceae                    NA         NA      NA
## growthformShrub/Tree:FamilyGentianaceae               NA         NA      NA
## growthformTree:FamilyGentianaceae                     NA         NA      NA
## growthformHerb:FamilyHeliconiaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyHeliconiaceae              NA         NA      NA
## growthformShrub:FamilyHeliconiaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyHeliconiaceae              NA         NA      NA
## growthformTree:FamilyHeliconiaceae                    NA         NA      NA
## growthformHerb:FamilyJuglandaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyJuglandaceae               NA         NA      NA
## growthformShrub:FamilyJuglandaceae                    NA         NA      NA
## growthformShrub/Tree:FamilyJuglandaceae               NA         NA      NA
## growthformTree:FamilyJuglandaceae                     NA         NA      NA
## growthformHerb:FamilyJuncaginaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyJuncaginaceae              NA         NA      NA
## growthformShrub:FamilyJuncaginaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyJuncaginaceae              NA         NA      NA
## growthformTree:FamilyJuncaginaceae                    NA         NA      NA
## growthformHerb:FamilyLamiaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyLamiaceae                  NA         NA      NA
## growthformShrub:FamilyLamiaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyLamiaceae                  NA         NA      NA
## growthformTree:FamilyLamiaceae                        NA         NA      NA
## growthformHerb:FamilyLauraceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyLauraceae                  NA         NA      NA
## growthformShrub:FamilyLauraceae                       NA         NA      NA
## growthformShrub/Tree:FamilyLauraceae                  NA         NA      NA
## growthformTree:FamilyLauraceae                        NA         NA      NA
## growthformHerb:FamilyMaesaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyMaesaceae                  NA         NA      NA
## growthformShrub:FamilyMaesaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyMaesaceae                  NA         NA      NA
## growthformTree:FamilyMaesaceae                        NA         NA      NA
## growthformHerb:FamilyMalvaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyMalvaceae                  NA         NA      NA
## growthformShrub:FamilyMalvaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyMalvaceae                  NA         NA      NA
## growthformTree:FamilyMalvaceae                        NA         NA      NA
## growthformHerb:FamilyMelastomataceae                  NA         NA      NA
## growthformHerb/Shrub:FamilyMelastomataceae            NA         NA      NA
## growthformShrub:FamilyMelastomataceae                 NA         NA      NA
## growthformShrub/Tree:FamilyMelastomataceae            NA         NA      NA
## growthformTree:FamilyMelastomataceae                  NA         NA      NA
## growthformHerb:FamilyMoraceae                         NA         NA      NA
## growthformHerb/Shrub:FamilyMoraceae                   NA         NA      NA
## growthformShrub:FamilyMoraceae                        NA         NA      NA
## growthformShrub/Tree:FamilyMoraceae                   NA         NA      NA
## growthformTree:FamilyMoraceae                         NA         NA      NA
## growthformHerb:FamilyMyristicaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyMyristicaceae              NA         NA      NA
## growthformShrub:FamilyMyristicaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyMyristicaceae              NA         NA      NA
## growthformTree:FamilyMyristicaceae                    NA         NA      NA
## growthformHerb:FamilyMyrsinaceae                      NA         NA      NA
## growthformHerb/Shrub:FamilyMyrsinaceae                NA         NA      NA
## growthformShrub:FamilyMyrsinaceae                     NA         NA      NA
## growthformShrub/Tree:FamilyMyrsinaceae         2.252e+02  2.829e+02   0.796
## growthformTree:FamilyMyrsinaceae                      NA         NA      NA
## growthformHerb:FamilyMyrtaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyMyrtaceae                  NA         NA      NA
## growthformShrub:FamilyMyrtaceae                2.171e+02  2.710e+02   0.801
## growthformShrub/Tree:FamilyMyrtaceae                  NA         NA      NA
## growthformTree:FamilyMyrtaceae                        NA         NA      NA
## growthformHerb:FamilyOchnaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyOchnaceae                  NA         NA      NA
## growthformShrub:FamilyOchnaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyOchnaceae                  NA         NA      NA
## growthformTree:FamilyOchnaceae                        NA         NA      NA
## growthformHerb:FamilyOnagraceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyOnagraceae                 NA         NA      NA
## growthformShrub:FamilyOnagraceae                      NA         NA      NA
## growthformShrub/Tree:FamilyOnagraceae                 NA         NA      NA
## growthformTree:FamilyOnagraceae                       NA         NA      NA
## growthformHerb:FamilyOrobanchaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyOrobanchaceae              NA         NA      NA
## growthformShrub:FamilyOrobanchaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyOrobanchaceae              NA         NA      NA
## growthformTree:FamilyOrobanchaceae                    NA         NA      NA
## growthformHerb:FamilyPhyllanthaceae                   NA         NA      NA
## growthformHerb/Shrub:FamilyPhyllanthaceae             NA         NA      NA
## growthformShrub:FamilyPhyllanthaceae                  NA         NA      NA
## growthformShrub/Tree:FamilyPhyllanthaceae             NA         NA      NA
## growthformTree:FamilyPhyllanthaceae                   NA         NA      NA
## growthformHerb:FamilyPicrodendraceae                  NA         NA      NA
## growthformHerb/Shrub:FamilyPicrodendraceae            NA         NA      NA
## growthformShrub:FamilyPicrodendraceae                 NA         NA      NA
## growthformShrub/Tree:FamilyPicrodendraceae            NA         NA      NA
## growthformTree:FamilyPicrodendraceae                  NA         NA      NA
## growthformHerb:FamilyPinaceae                         NA         NA      NA
## growthformHerb/Shrub:FamilyPinaceae                   NA         NA      NA
## growthformShrub:FamilyPinaceae                        NA         NA      NA
## growthformShrub/Tree:FamilyPinaceae                   NA         NA      NA
## growthformTree:FamilyPinaceae                         NA         NA      NA
## growthformHerb:FamilyPoaceae                  -2.601e+02  3.246e+02  -0.801
## growthformHerb/Shrub:FamilyPoaceae                    NA         NA      NA
## growthformShrub:FamilyPoaceae                         NA         NA      NA
## growthformShrub/Tree:FamilyPoaceae                    NA         NA      NA
## growthformTree:FamilyPoaceae                          NA         NA      NA
## growthformHerb:FamilyPolemoniaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyPolemoniaceae              NA         NA      NA
## growthformShrub:FamilyPolemoniaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyPolemoniaceae              NA         NA      NA
## growthformTree:FamilyPolemoniaceae                    NA         NA      NA
## growthformHerb:FamilyPolygonaceae                     NA         NA      NA
## growthformHerb/Shrub:FamilyPolygonaceae               NA         NA      NA
## growthformShrub:FamilyPolygonaceae                    NA         NA      NA
## growthformShrub/Tree:FamilyPolygonaceae               NA         NA      NA
## growthformTree:FamilyPolygonaceae                     NA         NA      NA
## growthformHerb:FamilyProteaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyProteaceae                 NA         NA      NA
## growthformShrub:FamilyProteaceae               2.174e+02  2.714e+02   0.801
## growthformShrub/Tree:FamilyProteaceae                 NA         NA      NA
## growthformTree:FamilyProteaceae                       NA         NA      NA
## growthformHerb:FamilyRanunculaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyRanunculaceae              NA         NA      NA
## growthformShrub:FamilyRanunculaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyRanunculaceae              NA         NA      NA
## growthformTree:FamilyRanunculaceae                    NA         NA      NA
## growthformHerb:FamilyRhamnaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyRhamnaceae                 NA         NA      NA
## growthformShrub:FamilyRhamnaceae                      NA         NA      NA
## growthformShrub/Tree:FamilyRhamnaceae                 NA         NA      NA
## growthformTree:FamilyRhamnaceae                       NA         NA      NA
## growthformHerb:FamilyRosaceae                  3.723e+02  4.458e+02   0.835
## growthformHerb/Shrub:FamilyRosaceae                   NA         NA      NA
## growthformShrub:FamilyRosaceae                 2.126e+02  2.715e+02   0.783
## growthformShrub/Tree:FamilyRosaceae                   NA         NA      NA
## growthformTree:FamilyRosaceae                         NA         NA      NA
## growthformHerb:FamilyRubiaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyRubiaceae                  NA         NA      NA
## growthformShrub:FamilyRubiaceae                6.243e+00  3.379e+00   1.848
## growthformShrub/Tree:FamilyRubiaceae                  NA         NA      NA
## growthformTree:FamilyRubiaceae                        NA         NA      NA
## growthformHerb:FamilyRutaceae                         NA         NA      NA
## growthformHerb/Shrub:FamilyRutaceae                   NA         NA      NA
## growthformShrub:FamilyRutaceae                        NA         NA      NA
## growthformShrub/Tree:FamilyRutaceae                   NA         NA      NA
## growthformTree:FamilyRutaceae                         NA         NA      NA
## growthformHerb:FamilySalicaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilySalicaceae                 NA         NA      NA
## growthformShrub:FamilySalicaceae               9.252e+00  6.665e+00   1.388
## growthformShrub/Tree:FamilySalicaceae                 NA         NA      NA
## growthformTree:FamilySalicaceae                       NA         NA      NA
## growthformHerb:FamilySapindaceae                      NA         NA      NA
## growthformHerb/Shrub:FamilySapindaceae                NA         NA      NA
## growthformShrub:FamilySapindaceae                     NA         NA      NA
## growthformShrub/Tree:FamilySapindaceae                NA         NA      NA
## growthformTree:FamilySapindaceae                      NA         NA      NA
## growthformHerb:FamilySapotaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilySapotaceae                 NA         NA      NA
## growthformShrub:FamilySapotaceae                      NA         NA      NA
## growthformShrub/Tree:FamilySapotaceae                 NA         NA      NA
## growthformTree:FamilySapotaceae                       NA         NA      NA
## growthformHerb:FamilyScrophulariaceae                 NA         NA      NA
## growthformHerb/Shrub:FamilyScrophulariaceae           NA         NA      NA
## growthformShrub:FamilyScrophulariaceae                NA         NA      NA
## growthformShrub/Tree:FamilyScrophulariaceae           NA         NA      NA
## growthformTree:FamilyScrophulariaceae                 NA         NA      NA
## growthformHerb:FamilyThymelaeaceae                    NA         NA      NA
## growthformHerb/Shrub:FamilyThymelaeaceae              NA         NA      NA
## growthformShrub:FamilyThymelaeaceae                   NA         NA      NA
## growthformShrub/Tree:FamilyThymelaeaceae              NA         NA      NA
## growthformTree:FamilyThymelaeaceae                    NA         NA      NA
## growthformHerb:FamilyUlmaceae                         NA         NA      NA
## growthformHerb/Shrub:FamilyUlmaceae                   NA         NA      NA
## growthformShrub:FamilyUlmaceae                        NA         NA      NA
## growthformShrub/Tree:FamilyUlmaceae                   NA         NA      NA
## growthformTree:FamilyUlmaceae                         NA         NA      NA
## growthformHerb:FamilyUrticaceae                       NA         NA      NA
## growthformHerb/Shrub:FamilyUrticaceae                 NA         NA      NA
## growthformShrub:FamilyUrticaceae                      NA         NA      NA
## growthformShrub/Tree:FamilyUrticaceae                 NA         NA      NA
## growthformTree:FamilyUrticaceae                       NA         NA      NA
## growthformHerb:FamilyViolaceae                        NA         NA      NA
## growthformHerb/Shrub:FamilyViolaceae                  NA         NA      NA
## growthformShrub:FamilyViolaceae                       NA         NA      NA
## growthformShrub/Tree:FamilyViolaceae                  NA         NA      NA
## growthformTree:FamilyViolaceae                        NA         NA      NA
## growthformHerb:FamilyXanthorrhoeaceae                 NA         NA      NA
## growthformHerb/Shrub:FamilyXanthorrhoeaceae           NA         NA      NA
## growthformShrub:FamilyXanthorrhoeaceae                NA         NA      NA
## growthformShrub/Tree:FamilyXanthorrhoeaceae           NA         NA      NA
## growthformTree:FamilyXanthorrhoeaceae                 NA         NA      NA
## growthformHerb:FamilyZygophyllaceae                   NA         NA      NA
## growthformHerb/Shrub:FamilyZygophyllaceae             NA         NA      NA
## growthformShrub:FamilyZygophyllaceae                  NA         NA      NA
## growthformShrub/Tree:FamilyZygophyllaceae             NA         NA      NA
## growthformTree:FamilyZygophyllaceae                   NA         NA      NA
## growthformHerb:lat                            -7.667e+00  9.125e+00  -0.840
## growthformHerb/Shrub:lat                              NA         NA      NA
## growthformShrub:lat                            7.514e-02  3.299e-02   2.278
## growthformShrub/Tree:lat                      -4.602e+00  4.806e+00  -0.957
## growthformTree:lat                                    NA         NA      NA
## growthformHerb:long                            3.209e-02  3.417e-02   0.939
## growthformHerb/Shrub:long                             NA         NA      NA
## growthformShrub:long                          -6.040e-03  1.358e-02  -0.445
## growthformShrub/Tree:long                             NA         NA      NA
## growthformTree:long                                   NA         NA      NA
## growthformHerb:NPP                             4.933e-04  4.811e-04   1.025
## growthformHerb/Shrub:NPP                              NA         NA      NA
## growthformShrub:NPP                            6.473e-04  3.846e-04   1.683
## growthformShrub/Tree:NPP                              NA         NA      NA
## growthformTree:NPP                                    NA         NA      NA
## FamilyAsteraceae:lat                           9.729e+00  8.577e+00   1.134
## FamilyAtherospermataceae:lat                          NA         NA      NA
## FamilyBalsaminaceae:lat                               NA         NA      NA
## FamilyBetulaceae:lat                          -5.249e-01  1.875e+00  -0.280
## FamilyBrassicaceae:lat                         6.681e+00  9.160e+00   0.729
## FamilyCactaceae:lat                           -1.966e+00  8.672e-01  -2.267
## FamilyCasuarinaceae:lat                               NA         NA      NA
## FamilyChloranthaceae:lat                              NA         NA      NA
## FamilyChrysobalanaceae:lat                    -7.988e-01  1.363e+00  -0.586
## FamilyCistaceae:lat                                   NA         NA      NA
## FamilyCornaceae:lat                                   NA         NA      NA
## FamilyCrassulaceae:lat                                NA         NA      NA
## FamilyCunoniaceae:lat                                 NA         NA      NA
## FamilyCupressaceae:lat                                NA         NA      NA
## FamilyCyperaceae:lat                                  NA         NA      NA
## FamilyDennstaedtiaceae:lat                            NA         NA      NA
## FamilyDicksoniaceae:lat                               NA         NA      NA
## FamilyDipterocarpaceae:lat                            NA         NA      NA
## FamilyEbenaceae:lat                           -2.703e-01  3.089e-01  -0.875
## FamilyElaeocarpaceae:lat                              NA         NA      NA
## FamilyEricaceae:lat                           -8.632e-01  6.646e-01  -1.299
## FamilyEuphorbiaceae:lat                       -7.697e-01  7.758e-01  -0.992
## FamilyFabaceae - C:lat                        -6.439e-01  7.319e-01  -0.880
## FamilyFabaceae - M:lat                                NA         NA      NA
## FamilyFabaceae - P:lat                        -2.849e+00  2.838e+00  -1.004
## FamilyFagaceae:lat                            -6.391e-01  6.767e-01  -0.944
## FamilyGentianaceae:lat                         7.953e+00  9.600e+00   0.828
## FamilyHeliconiaceae:lat                               NA         NA      NA
## FamilyJuglandaceae:lat                                NA         NA      NA
## FamilyJuncaginaceae:lat                               NA         NA      NA
## FamilyLamiaceae:lat                                   NA         NA      NA
## FamilyLauraceae:lat                                   NA         NA      NA
## FamilyMaesaceae:lat                                   NA         NA      NA
## FamilyMalvaceae:lat                           -5.759e-01  7.352e-01  -0.783
## FamilyMelastomataceae:lat                             NA         NA      NA
## FamilyMoraceae:lat                                    NA         NA      NA
## FamilyMyristicaceae:lat                               NA         NA      NA
## FamilyMyrsinaceae:lat                                 NA         NA      NA
## FamilyMyrtaceae:lat                           -2.630e-01  6.091e-01  -0.432
## FamilyOchnaceae:lat                                   NA         NA      NA
## FamilyOnagraceae:lat                                  NA         NA      NA
## FamilyOrobanchaceae:lat                        6.419e+00  8.683e+00   0.739
## FamilyPhyllanthaceae:lat                              NA         NA      NA
## FamilyPicrodendraceae:lat                             NA         NA      NA
## FamilyPinaceae:lat                            -1.017e+00  6.698e-01  -1.518
## FamilyPoaceae:lat                              7.161e+00  8.523e+00   0.840
## FamilyPolemoniaceae:lat                        6.911e+00  8.461e+00   0.817
## FamilyPolygonaceae:lat                         6.776e+00  8.505e+00   0.797
## FamilyProteaceae:lat                          -1.078e+00  6.906e-01  -1.560
## FamilyRanunculaceae:lat                               NA         NA      NA
## FamilyRhamnaceae:lat                                  NA         NA      NA
## FamilyRosaceae:lat                            -8.875e-01  5.851e-01  -1.517
## FamilyRubiaceae:lat                           -1.008e+00  7.723e-01  -1.305
## FamilyRutaceae:lat                                    NA         NA      NA
## FamilySalicaceae:lat                          -1.327e+00  1.062e+00  -1.249
## FamilySapindaceae:lat                         -7.032e-01  7.657e-01  -0.918
## FamilySapotaceae:lat                                  NA         NA      NA
## FamilyScrophulariaceae:lat                            NA         NA      NA
## FamilyThymelaeaceae:lat                               NA         NA      NA
## FamilyUlmaceae:lat                            -1.490e+00  1.311e+00  -1.137
## FamilyUrticaceae:lat                          -1.170e+00  1.217e+00  -0.962
## FamilyViolaceae:lat                                   NA         NA      NA
## FamilyXanthorrhoeaceae:lat                            NA         NA      NA
## FamilyZygophyllaceae:lat                              NA         NA      NA
## FamilyAsteraceae:long                          3.953e-02  8.917e-03   4.433
## FamilyAtherospermataceae:long                         NA         NA      NA
## FamilyBalsaminaceae:long                              NA         NA      NA
## FamilyBetulaceae:long                          1.284e+00  1.382e+00   0.929
## FamilyBrassicaceae:long                               NA         NA      NA
## FamilyCactaceae:long                           3.726e-02  2.427e-02   1.535
## FamilyCasuarinaceae:long                              NA         NA      NA
## FamilyChloranthaceae:long                             NA         NA      NA
## FamilyChrysobalanaceae:long                           NA         NA      NA
## FamilyCistaceae:long                                  NA         NA      NA
## FamilyCornaceae:long                                  NA         NA      NA
## FamilyCrassulaceae:long                               NA         NA      NA
## FamilyCunoniaceae:long                                NA         NA      NA
## FamilyCupressaceae:long                               NA         NA      NA
## FamilyCyperaceae:long                                 NA         NA      NA
## FamilyDennstaedtiaceae:long                           NA         NA      NA
## FamilyDicksoniaceae:long                              NA         NA      NA
## FamilyDipterocarpaceae:long                           NA         NA      NA
## FamilyEbenaceae:long                                  NA         NA      NA
## FamilyElaeocarpaceae:long                             NA         NA      NA
## FamilyEricaceae:long                           6.409e-02  2.972e-02   2.156
## FamilyEuphorbiaceae:long                       4.371e-02  4.554e-02   0.960
## FamilyFabaceae - C:long                               NA         NA      NA
## FamilyFabaceae - M:long                               NA         NA      NA
## FamilyFabaceae - P:long                               NA         NA      NA
## FamilyFagaceae:long                                   NA         NA      NA
## FamilyGentianaceae:long                               NA         NA      NA
## FamilyHeliconiaceae:long                              NA         NA      NA
## FamilyJuglandaceae:long                               NA         NA      NA
## FamilyJuncaginaceae:long                              NA         NA      NA
## FamilyLamiaceae:long                                  NA         NA      NA
## FamilyLauraceae:long                                  NA         NA      NA
## FamilyMaesaceae:long                                  NA         NA      NA
## FamilyMalvaceae:long                           3.701e-02  4.705e-02   0.787
## FamilyMelastomataceae:long                            NA         NA      NA
## FamilyMoraceae:long                                   NA         NA      NA
## FamilyMyristicaceae:long                              NA         NA      NA
## FamilyMyrsinaceae:long                                NA         NA      NA
## FamilyMyrtaceae:long                           5.316e-02  3.216e-02   1.653
## FamilyOchnaceae:long                                  NA         NA      NA
## FamilyOnagraceae:long                                 NA         NA      NA
## FamilyOrobanchaceae:long                              NA         NA      NA
## FamilyPhyllanthaceae:long                             NA         NA      NA
## FamilyPicrodendraceae:long                            NA         NA      NA
## FamilyPinaceae:long                            1.006e-03  3.483e-02   0.029
## FamilyPoaceae:long                                    NA         NA      NA
## FamilyPolemoniaceae:long                              NA         NA      NA
## FamilyPolygonaceae:long                               NA         NA      NA
## FamilyProteaceae:long                          3.544e-02  2.338e-02   1.516
## FamilyRanunculaceae:long                              NA         NA      NA
## FamilyRhamnaceae:long                                 NA         NA      NA
## FamilyRosaceae:long                            6.083e-02  5.503e-02   1.105
## FamilyRubiaceae:long                                  NA         NA      NA
## FamilyRutaceae:long                                   NA         NA      NA
## FamilySalicaceae:long                                 NA         NA      NA
## FamilySapindaceae:long                         4.512e-02  2.639e-02   1.710
## FamilySapotaceae:long                                 NA         NA      NA
## FamilyScrophulariaceae:long                           NA         NA      NA
## FamilyThymelaeaceae:long                              NA         NA      NA
## FamilyUlmaceae:long                                   NA         NA      NA
## FamilyUrticaceae:long                                 NA         NA      NA
## FamilyViolaceae:long                                  NA         NA      NA
## FamilyXanthorrhoeaceae:long                           NA         NA      NA
## FamilyZygophyllaceae:long                             NA         NA      NA
## FamilyAsteraceae:alt                           2.977e-02  1.249e-02   2.384
## FamilyAtherospermataceae:alt                          NA         NA      NA
## FamilyBalsaminaceae:alt                               NA         NA      NA
## FamilyBetulaceae:alt                                  NA         NA      NA
## FamilyBrassicaceae:alt                                NA         NA      NA
## FamilyCactaceae:alt                           -4.211e-03  9.104e-03  -0.463
## FamilyCasuarinaceae:alt                               NA         NA      NA
## FamilyChloranthaceae:alt                              NA         NA      NA
## FamilyChrysobalanaceae:alt                            NA         NA      NA
## FamilyCistaceae:alt                                   NA         NA      NA
## FamilyCornaceae:alt                                   NA         NA      NA
## FamilyCrassulaceae:alt                                NA         NA      NA
## FamilyCunoniaceae:alt                                 NA         NA      NA
## FamilyCupressaceae:alt                                NA         NA      NA
## FamilyCyperaceae:alt                                  NA         NA      NA
## FamilyDennstaedtiaceae:alt                            NA         NA      NA
## FamilyDicksoniaceae:alt                               NA         NA      NA
## FamilyDipterocarpaceae:alt                            NA         NA      NA
## FamilyEbenaceae:alt                                   NA         NA      NA
## FamilyElaeocarpaceae:alt                              NA         NA      NA
## FamilyEricaceae:alt                            2.057e-03  9.530e-03   0.216
## FamilyEuphorbiaceae:alt                               NA         NA      NA
## FamilyFabaceae - C:alt                                NA         NA      NA
## FamilyFabaceae - M:alt                                NA         NA      NA
## FamilyFabaceae - P:alt                                NA         NA      NA
## FamilyFagaceae:alt                                    NA         NA      NA
## FamilyGentianaceae:alt                                NA         NA      NA
## FamilyHeliconiaceae:alt                               NA         NA      NA
## FamilyJuglandaceae:alt                                NA         NA      NA
## FamilyJuncaginaceae:alt                               NA         NA      NA
## FamilyLamiaceae:alt                                   NA         NA      NA
## FamilyLauraceae:alt                                   NA         NA      NA
## FamilyMaesaceae:alt                                   NA         NA      NA
## FamilyMalvaceae:alt                                   NA         NA      NA
## FamilyMelastomataceae:alt                             NA         NA      NA
## FamilyMoraceae:alt                                    NA         NA      NA
## FamilyMyristicaceae:alt                               NA         NA      NA
## FamilyMyrsinaceae:alt                                 NA         NA      NA
## FamilyMyrtaceae:alt                           -2.001e-03  8.486e-03  -0.236
## FamilyOchnaceae:alt                                   NA         NA      NA
## FamilyOnagraceae:alt                                  NA         NA      NA
## FamilyOrobanchaceae:alt                               NA         NA      NA
## FamilyPhyllanthaceae:alt                              NA         NA      NA
## FamilyPicrodendraceae:alt                             NA         NA      NA
## FamilyPinaceae:alt                            -7.229e-03  8.920e-03  -0.810
## FamilyPoaceae:alt                             -3.846e-03  8.857e-03  -0.434
## FamilyPolemoniaceae:alt                               NA         NA      NA
## FamilyPolygonaceae:alt                                NA         NA      NA
## FamilyProteaceae:alt                          -8.882e-03  8.984e-03  -0.989
## FamilyRanunculaceae:alt                               NA         NA      NA
## FamilyRhamnaceae:alt                                  NA         NA      NA
## FamilyRosaceae:alt                                    NA         NA      NA
## FamilyRubiaceae:alt                                   NA         NA      NA
## FamilyRutaceae:alt                                    NA         NA      NA
## FamilySalicaceae:alt                                  NA         NA      NA
## FamilySapindaceae:alt                                 NA         NA      NA
## FamilySapotaceae:alt                                  NA         NA      NA
## FamilyScrophulariaceae:alt                            NA         NA      NA
## FamilyThymelaeaceae:alt                               NA         NA      NA
## FamilyUlmaceae:alt                                    NA         NA      NA
## FamilyUrticaceae:alt                                  NA         NA      NA
## FamilyViolaceae:alt                                   NA         NA      NA
## FamilyXanthorrhoeaceae:alt                            NA         NA      NA
## FamilyZygophyllaceae:alt                              NA         NA      NA
## FamilyAsteraceae:temp                          9.741e+00  2.649e+00   3.678
## FamilyAtherospermataceae:temp                         NA         NA      NA
## FamilyBalsaminaceae:temp                              NA         NA      NA
## FamilyBetulaceae:temp                                 NA         NA      NA
## FamilyBrassicaceae:temp                               NA         NA      NA
## FamilyCactaceae:temp                                  NA         NA      NA
## FamilyCasuarinaceae:temp                              NA         NA      NA
## FamilyChloranthaceae:temp                             NA         NA      NA
## FamilyChrysobalanaceae:temp                           NA         NA      NA
## FamilyCistaceae:temp                                  NA         NA      NA
## FamilyCornaceae:temp                                  NA         NA      NA
## FamilyCrassulaceae:temp                               NA         NA      NA
## FamilyCunoniaceae:temp                                NA         NA      NA
## FamilyCupressaceae:temp                               NA         NA      NA
## FamilyCyperaceae:temp                                 NA         NA      NA
## FamilyDennstaedtiaceae:temp                           NA         NA      NA
## FamilyDicksoniaceae:temp                              NA         NA      NA
## FamilyDipterocarpaceae:temp                           NA         NA      NA
## FamilyEbenaceae:temp                                  NA         NA      NA
## FamilyElaeocarpaceae:temp                             NA         NA      NA
## FamilyEricaceae:temp                                  NA         NA      NA
## FamilyEuphorbiaceae:temp                              NA         NA      NA
## FamilyFabaceae - C:temp                               NA         NA      NA
## FamilyFabaceae - M:temp                               NA         NA      NA
## FamilyFabaceae - P:temp                               NA         NA      NA
## FamilyFagaceae:temp                                   NA         NA      NA
## FamilyGentianaceae:temp                               NA         NA      NA
## FamilyHeliconiaceae:temp                              NA         NA      NA
## FamilyJuglandaceae:temp                               NA         NA      NA
## FamilyJuncaginaceae:temp                              NA         NA      NA
## FamilyLamiaceae:temp                                  NA         NA      NA
## FamilyLauraceae:temp                                  NA         NA      NA
## FamilyMaesaceae:temp                                  NA         NA      NA
## FamilyMalvaceae:temp                                  NA         NA      NA
## FamilyMelastomataceae:temp                            NA         NA      NA
## FamilyMoraceae:temp                                   NA         NA      NA
## FamilyMyristicaceae:temp                              NA         NA      NA
## FamilyMyrsinaceae:temp                                NA         NA      NA
## FamilyMyrtaceae:temp                           1.113e+00  3.408e-01   3.266
## FamilyOchnaceae:temp                                  NA         NA      NA
## FamilyOnagraceae:temp                                 NA         NA      NA
## FamilyOrobanchaceae:temp                              NA         NA      NA
## FamilyPhyllanthaceae:temp                             NA         NA      NA
## FamilyPicrodendraceae:temp                            NA         NA      NA
## FamilyPinaceae:temp                                   NA         NA      NA
## FamilyPoaceae:temp                             6.425e-01  2.770e-01   2.320
## FamilyPolemoniaceae:temp                              NA         NA      NA
## FamilyPolygonaceae:temp                               NA         NA      NA
## FamilyProteaceae:temp                                 NA         NA      NA
## FamilyRanunculaceae:temp                              NA         NA      NA
## FamilyRhamnaceae:temp                                 NA         NA      NA
## FamilyRosaceae:temp                                   NA         NA      NA
## FamilyRubiaceae:temp                                  NA         NA      NA
## FamilyRutaceae:temp                                   NA         NA      NA
## FamilySalicaceae:temp                                 NA         NA      NA
## FamilySapindaceae:temp                                NA         NA      NA
## FamilySapotaceae:temp                                 NA         NA      NA
## FamilyScrophulariaceae:temp                           NA         NA      NA
## FamilyThymelaeaceae:temp                              NA         NA      NA
## FamilyUlmaceae:temp                                   NA         NA      NA
## FamilyUrticaceae:temp                                 NA         NA      NA
## FamilyViolaceae:temp                                  NA         NA      NA
## FamilyXanthorrhoeaceae:temp                           NA         NA      NA
## FamilyZygophyllaceae:temp                             NA         NA      NA
## lat:long                                      -4.850e-04  3.239e-04  -1.497
## lat:temp                                      -5.288e-03  1.011e-03  -5.231
## lat:NPP                                       -4.384e-05  4.734e-05  -0.926
## long:alt                                      -1.635e-06  2.683e-06  -0.609
## long:temp                                     -1.650e-03  5.755e-04  -2.868
## long:NPP                                       7.363e-06  2.523e-06   2.918
## alt:temp                                      -5.835e-05  1.708e-05  -3.416
## temp:NPP                                      -1.631e-04  8.021e-05  -2.034
##                                               Pr(>|t|)    
## (Intercept)                                   0.471210    
## growthformHerb                                0.401018    
## growthformHerb/Shrub                          0.959364    
## growthformShrub                               0.459650    
## growthformShrub/Tree                          0.576973    
## growthformTree                                0.209409    
## FamilyAsteraceae                              0.024915 *  
## FamilyAtherospermataceae                      0.240297    
## FamilyBalsaminaceae                           0.445806    
## FamilyBetulaceae                              0.781378    
## FamilyBrassicaceae                            0.520831    
## FamilyCactaceae                               0.374789    
## FamilyCasuarinaceae                           0.457542    
## FamilyChloranthaceae                          0.451076    
## FamilyChrysobalanaceae                        0.531209    
## FamilyCistaceae                               0.457466    
## FamilyCornaceae                               0.444251    
## FamilyCrassulaceae                            0.461491    
## FamilyCunoniaceae                             0.580889    
## FamilyCupressaceae                            0.306038    
## FamilyCyperaceae                              0.397873    
## FamilyDennstaedtiaceae                              NA    
## FamilyDicksoniaceae                           0.468095    
## FamilyDipterocarpaceae                        0.398966    
## FamilyEbenaceae                               0.397522    
## FamilyElaeocarpaceae                          0.323838    
## FamilyEricaceae                               0.451810    
## FamilyEuphorbiaceae                           0.438290    
## FamilyFabaceae - C                            0.453083    
## FamilyFabaceae - M                            0.244394    
## FamilyFabaceae - P                            0.340876    
## FamilyFagaceae                                0.799425    
## FamilyGentianaceae                            0.406314    
## FamilyHeliconiaceae                           0.418080    
## FamilyJuglandaceae                            0.307939    
## FamilyJuncaginaceae                           0.445752    
## FamilyLamiaceae                               0.474074    
## FamilyLauraceae                               0.548932    
## FamilyMaesaceae                               0.447295    
## FamilyMalvaceae                               0.537119    
## FamilyMelastomataceae                         0.447635    
## FamilyMoraceae                                0.380649    
## FamilyMyristicaceae                           0.349574    
## FamilyMyrsinaceae                             0.393440    
## FamilyMyrtaceae                               0.011832 *  
## FamilyOchnaceae                               0.448174    
## FamilyOnagraceae                                    NA    
## FamilyOrobanchaceae                           0.553364    
## FamilyPhyllanthaceae                          0.393311    
## FamilyPicrodendraceae                         0.359305    
## FamilyPinaceae                                0.087314 .  
## FamilyPoaceae                                 0.529061    
## FamilyPolemoniaceae                           0.415849    
## FamilyPolygonaceae                            0.444282    
## FamilyProteaceae                              0.106800    
## FamilyRanunculaceae                           0.447850    
## FamilyRhamnaceae                              0.466950    
## FamilyRosaceae                                0.016301 *  
## FamilyRubiaceae                               0.441496    
## FamilyRutaceae                                0.456598    
## FamilySalicaceae                              0.433258    
## FamilySapindaceae                             0.607885    
## FamilySapotaceae                              0.276654    
## FamilyScrophulariaceae                        0.448464    
## FamilyThymelaeaceae                           0.336091    
## FamilyUlmaceae                                0.231765    
## FamilyUrticaceae                              0.338942    
## FamilyViolaceae                               0.447326    
## FamilyXanthorrhoeaceae                        0.455414    
## FamilyZygophyllaceae                          0.467051    
## lat                                           0.325004    
## long                                          0.860913    
## alt                                           0.550965    
## temp                                          0.447922    
## NPP                                           0.298512    
## growthformHerb:FamilyAsteraceae               0.761650    
## growthformHerb/Shrub:FamilyAsteraceae               NA    
## growthformShrub:FamilyAsteraceae                    NA    
## growthformShrub/Tree:FamilyAsteraceae               NA    
## growthformTree:FamilyAsteraceae                     NA    
## growthformHerb:FamilyAtherospermataceae             NA    
## growthformHerb/Shrub:FamilyAtherospermataceae       NA    
## growthformShrub:FamilyAtherospermataceae            NA    
## growthformShrub/Tree:FamilyAtherospermataceae       NA    
## growthformTree:FamilyAtherospermataceae             NA    
## growthformHerb:FamilyBalsaminaceae                  NA    
## growthformHerb/Shrub:FamilyBalsaminaceae            NA    
## growthformShrub:FamilyBalsaminaceae                 NA    
## growthformShrub/Tree:FamilyBalsaminaceae            NA    
## growthformTree:FamilyBalsaminaceae                  NA    
## growthformHerb:FamilyBetulaceae                     NA    
## growthformHerb/Shrub:FamilyBetulaceae               NA    
## growthformShrub:FamilyBetulaceae              0.483172    
## growthformShrub/Tree:FamilyBetulaceae               NA    
## growthformTree:FamilyBetulaceae                     NA    
## growthformHerb:FamilyBrassicaceae                   NA    
## growthformHerb/Shrub:FamilyBrassicaceae             NA    
## growthformShrub:FamilyBrassicaceae                  NA    
## growthformShrub/Tree:FamilyBrassicaceae             NA    
## growthformTree:FamilyBrassicaceae                   NA    
## growthformHerb:FamilyCactaceae                      NA    
## growthformHerb/Shrub:FamilyCactaceae                NA    
## growthformShrub:FamilyCactaceae                     NA    
## growthformShrub/Tree:FamilyCactaceae                NA    
## growthformTree:FamilyCactaceae                      NA    
## growthformHerb:FamilyCasuarinaceae                  NA    
## growthformHerb/Shrub:FamilyCasuarinaceae            NA    
## growthformShrub:FamilyCasuarinaceae                 NA    
## growthformShrub/Tree:FamilyCasuarinaceae            NA    
## growthformTree:FamilyCasuarinaceae                  NA    
## growthformHerb:FamilyChloranthaceae                 NA    
## growthformHerb/Shrub:FamilyChloranthaceae           NA    
## growthformShrub:FamilyChloranthaceae                NA    
## growthformShrub/Tree:FamilyChloranthaceae           NA    
## growthformTree:FamilyChloranthaceae                 NA    
## growthformHerb:FamilyChrysobalanaceae               NA    
## growthformHerb/Shrub:FamilyChrysobalanaceae         NA    
## growthformShrub:FamilyChrysobalanaceae              NA    
## growthformShrub/Tree:FamilyChrysobalanaceae         NA    
## growthformTree:FamilyChrysobalanaceae               NA    
## growthformHerb:FamilyCistaceae                      NA    
## growthformHerb/Shrub:FamilyCistaceae                NA    
## growthformShrub:FamilyCistaceae                     NA    
## growthformShrub/Tree:FamilyCistaceae                NA    
## growthformTree:FamilyCistaceae                      NA    
## growthformHerb:FamilyCornaceae                      NA    
## growthformHerb/Shrub:FamilyCornaceae                NA    
## growthformShrub:FamilyCornaceae                     NA    
## growthformShrub/Tree:FamilyCornaceae                NA    
## growthformTree:FamilyCornaceae                      NA    
## growthformHerb:FamilyCrassulaceae                   NA    
## growthformHerb/Shrub:FamilyCrassulaceae             NA    
## growthformShrub:FamilyCrassulaceae                  NA    
## growthformShrub/Tree:FamilyCrassulaceae             NA    
## growthformTree:FamilyCrassulaceae                   NA    
## growthformHerb:FamilyCunoniaceae                    NA    
## growthformHerb/Shrub:FamilyCunoniaceae              NA    
## growthformShrub:FamilyCunoniaceae                   NA    
## growthformShrub/Tree:FamilyCunoniaceae        0.448590    
## growthformTree:FamilyCunoniaceae                    NA    
## growthformHerb:FamilyCupressaceae                   NA    
## growthformHerb/Shrub:FamilyCupressaceae             NA    
## growthformShrub:FamilyCupressaceae            0.447817    
## growthformShrub/Tree:FamilyCupressaceae             NA    
## growthformTree:FamilyCupressaceae                   NA    
## growthformHerb:FamilyCyperaceae                     NA    
## growthformHerb/Shrub:FamilyCyperaceae               NA    
## growthformShrub:FamilyCyperaceae                    NA    
## growthformShrub/Tree:FamilyCyperaceae               NA    
## growthformTree:FamilyCyperaceae                     NA    
## growthformHerb:FamilyDennstaedtiaceae               NA    
## growthformHerb/Shrub:FamilyDennstaedtiaceae         NA    
## growthformShrub:FamilyDennstaedtiaceae              NA    
## growthformShrub/Tree:FamilyDennstaedtiaceae         NA    
## growthformTree:FamilyDennstaedtiaceae               NA    
## growthformHerb:FamilyDicksoniaceae                  NA    
## growthformHerb/Shrub:FamilyDicksoniaceae            NA    
## growthformShrub:FamilyDicksoniaceae                 NA    
## growthformShrub/Tree:FamilyDicksoniaceae            NA    
## growthformTree:FamilyDicksoniaceae                  NA    
## growthformHerb:FamilyDipterocarpaceae               NA    
## growthformHerb/Shrub:FamilyDipterocarpaceae         NA    
## growthformShrub:FamilyDipterocarpaceae              NA    
## growthformShrub/Tree:FamilyDipterocarpaceae         NA    
## growthformTree:FamilyDipterocarpaceae               NA    
## growthformHerb:FamilyEbenaceae                      NA    
## growthformHerb/Shrub:FamilyEbenaceae                NA    
## growthformShrub:FamilyEbenaceae                     NA    
## growthformShrub/Tree:FamilyEbenaceae                NA    
## growthformTree:FamilyEbenaceae                      NA    
## growthformHerb:FamilyElaeocarpaceae                 NA    
## growthformHerb/Shrub:FamilyElaeocarpaceae           NA    
## growthformShrub:FamilyElaeocarpaceae                NA    
## growthformShrub/Tree:FamilyElaeocarpaceae           NA    
## growthformTree:FamilyElaeocarpaceae                 NA    
## growthformHerb:FamilyEricaceae                      NA    
## growthformHerb/Shrub:FamilyEricaceae                NA    
## growthformShrub:FamilyEricaceae               0.724294    
## growthformShrub/Tree:FamilyEricaceae                NA    
## growthformTree:FamilyEricaceae                      NA    
## growthformHerb:FamilyEuphorbiaceae                  NA    
## growthformHerb/Shrub:FamilyEuphorbiaceae            NA    
## growthformShrub:FamilyEuphorbiaceae           0.444658    
## growthformShrub/Tree:FamilyEuphorbiaceae            NA    
## growthformTree:FamilyEuphorbiaceae                  NA    
## growthformHerb:FamilyFabaceae - C                   NA    
## growthformHerb/Shrub:FamilyFabaceae - C             NA    
## growthformShrub:FamilyFabaceae - C                  NA    
## growthformShrub/Tree:FamilyFabaceae - C             NA    
## growthformTree:FamilyFabaceae - C                   NA    
## growthformHerb:FamilyFabaceae - M                   NA    
## growthformHerb/Shrub:FamilyFabaceae - M             NA    
## growthformShrub:FamilyFabaceae - M                  NA    
## growthformShrub/Tree:FamilyFabaceae - M       0.432247    
## growthformTree:FamilyFabaceae - M                   NA    
## growthformHerb:FamilyFabaceae - P             0.412368    
## growthformHerb/Shrub:FamilyFabaceae - P             NA    
## growthformShrub:FamilyFabaceae - P            0.434788    
## growthformShrub/Tree:FamilyFabaceae - P             NA    
## growthformTree:FamilyFabaceae - P                   NA    
## growthformHerb:FamilyFagaceae                       NA    
## growthformHerb/Shrub:FamilyFagaceae                 NA    
## growthformShrub:FamilyFagaceae                0.451214    
## growthformShrub/Tree:FamilyFagaceae                 NA    
## growthformTree:FamilyFagaceae                       NA    
## growthformHerb:FamilyGentianaceae                   NA    
## growthformHerb/Shrub:FamilyGentianaceae             NA    
## growthformShrub:FamilyGentianaceae                  NA    
## growthformShrub/Tree:FamilyGentianaceae             NA    
## growthformTree:FamilyGentianaceae                   NA    
## growthformHerb:FamilyHeliconiaceae                  NA    
## growthformHerb/Shrub:FamilyHeliconiaceae            NA    
## growthformShrub:FamilyHeliconiaceae                 NA    
## growthformShrub/Tree:FamilyHeliconiaceae            NA    
## growthformTree:FamilyHeliconiaceae                  NA    
## growthformHerb:FamilyJuglandaceae                   NA    
## growthformHerb/Shrub:FamilyJuglandaceae             NA    
## growthformShrub:FamilyJuglandaceae                  NA    
## growthformShrub/Tree:FamilyJuglandaceae             NA    
## growthformTree:FamilyJuglandaceae                   NA    
## growthformHerb:FamilyJuncaginaceae                  NA    
## growthformHerb/Shrub:FamilyJuncaginaceae            NA    
## growthformShrub:FamilyJuncaginaceae                 NA    
## growthformShrub/Tree:FamilyJuncaginaceae            NA    
## growthformTree:FamilyJuncaginaceae                  NA    
## growthformHerb:FamilyLamiaceae                      NA    
## growthformHerb/Shrub:FamilyLamiaceae                NA    
## growthformShrub:FamilyLamiaceae                     NA    
## growthformShrub/Tree:FamilyLamiaceae                NA    
## growthformTree:FamilyLamiaceae                      NA    
## growthformHerb:FamilyLauraceae                      NA    
## growthformHerb/Shrub:FamilyLauraceae                NA    
## growthformShrub:FamilyLauraceae                     NA    
## growthformShrub/Tree:FamilyLauraceae                NA    
## growthformTree:FamilyLauraceae                      NA    
## growthformHerb:FamilyMaesaceae                      NA    
## growthformHerb/Shrub:FamilyMaesaceae                NA    
## growthformShrub:FamilyMaesaceae                     NA    
## growthformShrub/Tree:FamilyMaesaceae                NA    
## growthformTree:FamilyMaesaceae                      NA    
## growthformHerb:FamilyMalvaceae                      NA    
## growthformHerb/Shrub:FamilyMalvaceae                NA    
## growthformShrub:FamilyMalvaceae                     NA    
## growthformShrub/Tree:FamilyMalvaceae                NA    
## growthformTree:FamilyMalvaceae                      NA    
## growthformHerb:FamilyMelastomataceae                NA    
## growthformHerb/Shrub:FamilyMelastomataceae          NA    
## growthformShrub:FamilyMelastomataceae               NA    
## growthformShrub/Tree:FamilyMelastomataceae          NA    
## growthformTree:FamilyMelastomataceae                NA    
## growthformHerb:FamilyMoraceae                       NA    
## growthformHerb/Shrub:FamilyMoraceae                 NA    
## growthformShrub:FamilyMoraceae                      NA    
## growthformShrub/Tree:FamilyMoraceae                 NA    
## growthformTree:FamilyMoraceae                       NA    
## growthformHerb:FamilyMyristicaceae                  NA    
## growthformHerb/Shrub:FamilyMyristicaceae            NA    
## growthformShrub:FamilyMyristicaceae                 NA    
## growthformShrub/Tree:FamilyMyristicaceae            NA    
## growthformTree:FamilyMyristicaceae                  NA    
## growthformHerb:FamilyMyrsinaceae                    NA    
## growthformHerb/Shrub:FamilyMyrsinaceae              NA    
## growthformShrub:FamilyMyrsinaceae                   NA    
## growthformShrub/Tree:FamilyMyrsinaceae        0.444600    
## growthformTree:FamilyMyrsinaceae                    NA    
## growthformHerb:FamilyMyrtaceae                      NA    
## growthformHerb/Shrub:FamilyMyrtaceae                NA    
## growthformShrub:FamilyMyrtaceae               0.441684    
## growthformShrub/Tree:FamilyMyrtaceae                NA    
## growthformTree:FamilyMyrtaceae                      NA    
## growthformHerb:FamilyOchnaceae                      NA    
## growthformHerb/Shrub:FamilyOchnaceae                NA    
## growthformShrub:FamilyOchnaceae                     NA    
## growthformShrub/Tree:FamilyOchnaceae                NA    
## growthformTree:FamilyOchnaceae                      NA    
## growthformHerb:FamilyOnagraceae                     NA    
## growthformHerb/Shrub:FamilyOnagraceae               NA    
## growthformShrub:FamilyOnagraceae                    NA    
## growthformShrub/Tree:FamilyOnagraceae               NA    
## growthformTree:FamilyOnagraceae                     NA    
## growthformHerb:FamilyOrobanchaceae                  NA    
## growthformHerb/Shrub:FamilyOrobanchaceae            NA    
## growthformShrub:FamilyOrobanchaceae                 NA    
## growthformShrub/Tree:FamilyOrobanchaceae            NA    
## growthformTree:FamilyOrobanchaceae                  NA    
## growthformHerb:FamilyPhyllanthaceae                 NA    
## growthformHerb/Shrub:FamilyPhyllanthaceae           NA    
## growthformShrub:FamilyPhyllanthaceae                NA    
## growthformShrub/Tree:FamilyPhyllanthaceae           NA    
## growthformTree:FamilyPhyllanthaceae                 NA    
## growthformHerb:FamilyPicrodendraceae                NA    
## growthformHerb/Shrub:FamilyPicrodendraceae          NA    
## growthformShrub:FamilyPicrodendraceae               NA    
## growthformShrub/Tree:FamilyPicrodendraceae          NA    
## growthformTree:FamilyPicrodendraceae                NA    
## growthformHerb:FamilyPinaceae                       NA    
## growthformHerb/Shrub:FamilyPinaceae                 NA    
## growthformShrub:FamilyPinaceae                      NA    
## growthformShrub/Tree:FamilyPinaceae                 NA    
## growthformTree:FamilyPinaceae                       NA    
## growthformHerb:FamilyPoaceae                  0.441587    
## growthformHerb/Shrub:FamilyPoaceae                  NA    
## growthformShrub:FamilyPoaceae                       NA    
## growthformShrub/Tree:FamilyPoaceae                  NA    
## growthformTree:FamilyPoaceae                        NA    
## growthformHerb:FamilyPolemoniaceae                  NA    
## growthformHerb/Shrub:FamilyPolemoniaceae            NA    
## growthformShrub:FamilyPolemoniaceae                 NA    
## growthformShrub/Tree:FamilyPolemoniaceae            NA    
## growthformTree:FamilyPolemoniaceae                  NA    
## growthformHerb:FamilyPolygonaceae                   NA    
## growthformHerb/Shrub:FamilyPolygonaceae             NA    
## growthformShrub:FamilyPolygonaceae                  NA    
## growthformShrub/Tree:FamilyPolygonaceae             NA    
## growthformTree:FamilyPolygonaceae                   NA    
## growthformHerb:FamilyProteaceae                     NA    
## growthformHerb/Shrub:FamilyProteaceae               NA    
## growthformShrub:FamilyProteaceae              0.441738    
## growthformShrub/Tree:FamilyProteaceae               NA    
## growthformTree:FamilyProteaceae                     NA    
## growthformHerb:FamilyRanunculaceae                  NA    
## growthformHerb/Shrub:FamilyRanunculaceae            NA    
## growthformShrub:FamilyRanunculaceae                 NA    
## growthformShrub/Tree:FamilyRanunculaceae            NA    
## growthformTree:FamilyRanunculaceae                  NA    
## growthformHerb:FamilyRhamnaceae                     NA    
## growthformHerb/Shrub:FamilyRhamnaceae               NA    
## growthformShrub:FamilyRhamnaceae                    NA    
## growthformShrub/Tree:FamilyRhamnaceae               NA    
## growthformTree:FamilyRhamnaceae                     NA    
## growthformHerb:FamilyRosaceae                 0.423206    
## growthformHerb/Shrub:FamilyRosaceae                 NA    
## growthformShrub:FamilyRosaceae                0.451569    
## growthformShrub/Tree:FamilyRosaceae                 NA    
## growthformTree:FamilyRosaceae                       NA    
## growthformHerb:FamilyRubiaceae                      NA    
## growthformHerb/Shrub:FamilyRubiaceae                NA    
## growthformShrub:FamilyRubiaceae               0.094423 .  
## growthformShrub/Tree:FamilyRubiaceae                NA    
## growthformTree:FamilyRubiaceae                      NA    
## growthformHerb:FamilyRutaceae                       NA    
## growthformHerb/Shrub:FamilyRutaceae                 NA    
## growthformShrub:FamilyRutaceae                      NA    
## growthformShrub/Tree:FamilyRutaceae                 NA    
## growthformTree:FamilyRutaceae                       NA    
## growthformHerb:FamilySalicaceae                     NA    
## growthformHerb/Shrub:FamilySalicaceae               NA    
## growthformShrub:FamilySalicaceae              0.195221    
## growthformShrub/Tree:FamilySalicaceae               NA    
## growthformTree:FamilySalicaceae                     NA    
## growthformHerb:FamilySapindaceae                    NA    
## growthformHerb/Shrub:FamilySapindaceae              NA    
## growthformShrub:FamilySapindaceae                   NA    
## growthformShrub/Tree:FamilySapindaceae              NA    
## growthformTree:FamilySapindaceae                    NA    
## growthformHerb:FamilySapotaceae                     NA    
## growthformHerb/Shrub:FamilySapotaceae               NA    
## growthformShrub:FamilySapotaceae                    NA    
## growthformShrub/Tree:FamilySapotaceae               NA    
## growthformTree:FamilySapotaceae                     NA    
## growthformHerb:FamilyScrophulariaceae               NA    
## growthformHerb/Shrub:FamilyScrophulariaceae         NA    
## growthformShrub:FamilyScrophulariaceae              NA    
## growthformShrub/Tree:FamilyScrophulariaceae         NA    
## growthformTree:FamilyScrophulariaceae               NA    
## growthformHerb:FamilyThymelaeaceae                  NA    
## growthformHerb/Shrub:FamilyThymelaeaceae            NA    
## growthformShrub:FamilyThymelaeaceae                 NA    
## growthformShrub/Tree:FamilyThymelaeaceae            NA    
## growthformTree:FamilyThymelaeaceae                  NA    
## growthformHerb:FamilyUlmaceae                       NA    
## growthformHerb/Shrub:FamilyUlmaceae                 NA    
## growthformShrub:FamilyUlmaceae                      NA    
## growthformShrub/Tree:FamilyUlmaceae                 NA    
## growthformTree:FamilyUlmaceae                       NA    
## growthformHerb:FamilyUrticaceae                     NA    
## growthformHerb/Shrub:FamilyUrticaceae               NA    
## growthformShrub:FamilyUrticaceae                    NA    
## growthformShrub/Tree:FamilyUrticaceae               NA    
## growthformTree:FamilyUrticaceae                     NA    
## growthformHerb:FamilyViolaceae                      NA    
## growthformHerb/Shrub:FamilyViolaceae                NA    
## growthformShrub:FamilyViolaceae                     NA    
## growthformShrub/Tree:FamilyViolaceae                NA    
## growthformTree:FamilyViolaceae                      NA    
## growthformHerb:FamilyXanthorrhoeaceae               NA    
## growthformHerb/Shrub:FamilyXanthorrhoeaceae         NA    
## growthformShrub:FamilyXanthorrhoeaceae              NA    
## growthformShrub/Tree:FamilyXanthorrhoeaceae         NA    
## growthformTree:FamilyXanthorrhoeaceae               NA    
## growthformHerb:FamilyZygophyllaceae                 NA    
## growthformHerb/Shrub:FamilyZygophyllaceae           NA    
## growthformShrub:FamilyZygophyllaceae                NA    
## growthformShrub/Tree:FamilyZygophyllaceae           NA    
## growthformTree:FamilyZygophyllaceae                 NA    
## growthformHerb:lat                            0.420417    
## growthformHerb/Shrub:lat                            NA    
## growthformShrub:lat                           0.045980 *  
## growthformShrub/Tree:lat                      0.360912    
## growthformTree:lat                                  NA    
## growthformHerb:long                           0.369731    
## growthformHerb/Shrub:long                           NA    
## growthformShrub:long                          0.665856    
## growthformShrub/Tree:long                           NA    
## growthformTree:long                                 NA    
## growthformHerb:NPP                            0.329320    
## growthformHerb/Shrub:NPP                            NA    
## growthformShrub:NPP                           0.123317    
## growthformShrub/Tree:NPP                            NA    
## growthformTree:NPP                                  NA    
## FamilyAsteraceae:lat                          0.283138    
## FamilyAtherospermataceae:lat                        NA    
## FamilyBalsaminaceae:lat                             NA    
## FamilyBetulaceae:lat                          0.785252    
## FamilyBrassicaceae:lat                        0.482497    
## FamilyCactaceae:lat                           0.046821 *  
## FamilyCasuarinaceae:lat                             NA    
## FamilyChloranthaceae:lat                            NA    
## FamilyChrysobalanaceae:lat                    0.570866    
## FamilyCistaceae:lat                                 NA    
## FamilyCornaceae:lat                                 NA    
## FamilyCrassulaceae:lat                              NA    
## FamilyCunoniaceae:lat                               NA    
## FamilyCupressaceae:lat                              NA    
## FamilyCyperaceae:lat                                NA    
## FamilyDennstaedtiaceae:lat                          NA    
## FamilyDicksoniaceae:lat                             NA    
## FamilyDipterocarpaceae:lat                          NA    
## FamilyEbenaceae:lat                           0.402213    
## FamilyElaeocarpaceae:lat                            NA    
## FamilyEricaceae:lat                           0.223129    
## FamilyEuphorbiaceae:lat                       0.344510    
## FamilyFabaceae - C:lat                        0.399668    
## FamilyFabaceae - M:lat                              NA    
## FamilyFabaceae - P:lat                        0.339143    
## FamilyFagaceae:lat                            0.367245    
## FamilyGentianaceae:lat                        0.426756    
## FamilyHeliconiaceae:lat                             NA    
## FamilyJuglandaceae:lat                              NA    
## FamilyJuncaginaceae:lat                             NA    
## FamilyLamiaceae:lat                                 NA    
## FamilyLauraceae:lat                                 NA    
## FamilyMaesaceae:lat                                 NA    
## FamilyMalvaceae:lat                           0.451583    
## FamilyMelastomataceae:lat                           NA    
## FamilyMoraceae:lat                                  NA    
## FamilyMyristicaceae:lat                             NA    
## FamilyMyrsinaceae:lat                               NA    
## FamilyMyrtaceae:lat                           0.675074    
## FamilyOchnaceae:lat                                 NA    
## FamilyOnagraceae:lat                                NA    
## FamilyOrobanchaceae:lat                       0.476749    
## FamilyPhyllanthaceae:lat                            NA    
## FamilyPicrodendraceae:lat                           NA    
## FamilyPinaceae:lat                            0.159861    
## FamilyPoaceae:lat                             0.420438    
## FamilyPolemoniaceae:lat                       0.433041    
## FamilyPolygonaceae:lat                        0.444087    
## FamilyProteaceae:lat                          0.149712    
## FamilyRanunculaceae:lat                             NA    
## FamilyRhamnaceae:lat                                NA    
## FamilyRosaceae:lat                            0.160271    
## FamilyRubiaceae:lat                           0.221123    
## FamilyRutaceae:lat                                  NA    
## FamilySalicaceae:lat                          0.240215    
## FamilySapindaceae:lat                         0.380059    
## FamilySapotaceae:lat                                NA    
## FamilyScrophulariaceae:lat                          NA    
## FamilyThymelaeaceae:lat                             NA    
## FamilyUlmaceae:lat                            0.282140    
## FamilyUrticaceae:lat                          0.358817    
## FamilyViolaceae:lat                                 NA    
## FamilyXanthorrhoeaceae:lat                          NA    
## FamilyZygophyllaceae:lat                            NA    
## FamilyAsteraceae:long                         0.001268 ** 
## FamilyAtherospermataceae:long                       NA    
## FamilyBalsaminaceae:long                            NA    
## FamilyBetulaceae:long                         0.374743    
## FamilyBrassicaceae:long                             NA    
## FamilyCactaceae:long                          0.155711    
## FamilyCasuarinaceae:long                            NA    
## FamilyChloranthaceae:long                           NA    
## FamilyChrysobalanaceae:long                         NA    
## FamilyCistaceae:long                                NA    
## FamilyCornaceae:long                                NA    
## FamilyCrassulaceae:long                             NA    
## FamilyCunoniaceae:long                              NA    
## FamilyCupressaceae:long                             NA    
## FamilyCyperaceae:long                               NA    
## FamilyDennstaedtiaceae:long                         NA    
## FamilyDicksoniaceae:long                            NA    
## FamilyDipterocarpaceae:long                         NA    
## FamilyEbenaceae:long                                NA    
## FamilyElaeocarpaceae:long                           NA    
## FamilyEricaceae:long                          0.056466 .  
## FamilyEuphorbiaceae:long                      0.359718    
## FamilyFabaceae - C:long                             NA    
## FamilyFabaceae - M:long                             NA    
## FamilyFabaceae - P:long                             NA    
## FamilyFagaceae:long                                 NA    
## FamilyGentianaceae:long                             NA    
## FamilyHeliconiaceae:long                            NA    
## FamilyJuglandaceae:long                             NA    
## FamilyJuncaginaceae:long                            NA    
## FamilyLamiaceae:long                                NA    
## FamilyLauraceae:long                                NA    
## FamilyMaesaceae:long                                NA    
## FamilyMalvaceae:long                          0.449768    
## FamilyMelastomataceae:long                          NA    
## FamilyMoraceae:long                                 NA    
## FamilyMyristicaceae:long                            NA    
## FamilyMyrsinaceae:long                              NA    
## FamilyMyrtaceae:long                          0.129339    
## FamilyOchnaceae:long                                NA    
## FamilyOnagraceae:long                               NA    
## FamilyOrobanchaceae:long                            NA    
## FamilyPhyllanthaceae:long                           NA    
## FamilyPicrodendraceae:long                          NA    
## FamilyPinaceae:long                           0.977523    
## FamilyPoaceae:long                                  NA    
## FamilyPolemoniaceae:long                            NA    
## FamilyPolygonaceae:long                             NA    
## FamilyProteaceae:long                         0.160569    
## FamilyRanunculaceae:long                            NA    
## FamilyRhamnaceae:long                               NA    
## FamilyRosaceae:long                           0.294900    
## FamilyRubiaceae:long                                NA    
## FamilyRutaceae:long                                 NA    
## FamilySalicaceae:long                               NA    
## FamilySapindaceae:long                        0.118118    
## FamilySapotaceae:long                               NA    
## FamilyScrophulariaceae:long                         NA    
## FamilyThymelaeaceae:long                            NA    
## FamilyUlmaceae:long                                 NA    
## FamilyUrticaceae:long                               NA    
## FamilyViolaceae:long                                NA    
## FamilyXanthorrhoeaceae:long                         NA    
## FamilyZygophyllaceae:long                           NA    
## FamilyAsteraceae:alt                          0.038360 *  
## FamilyAtherospermataceae:alt                        NA    
## FamilyBalsaminaceae:alt                             NA    
## FamilyBetulaceae:alt                                NA    
## FamilyBrassicaceae:alt                              NA    
## FamilyCactaceae:alt                           0.653610    
## FamilyCasuarinaceae:alt                             NA    
## FamilyChloranthaceae:alt                            NA    
## FamilyChrysobalanaceae:alt                          NA    
## FamilyCistaceae:alt                                 NA    
## FamilyCornaceae:alt                                 NA    
## FamilyCrassulaceae:alt                              NA    
## FamilyCunoniaceae:alt                               NA    
## FamilyCupressaceae:alt                              NA    
## FamilyCyperaceae:alt                                NA    
## FamilyDennstaedtiaceae:alt                          NA    
## FamilyDicksoniaceae:alt                             NA    
## FamilyDipterocarpaceae:alt                          NA    
## FamilyEbenaceae:alt                                 NA    
## FamilyElaeocarpaceae:alt                            NA    
## FamilyEricaceae:alt                           0.833476    
## FamilyEuphorbiaceae:alt                             NA    
## FamilyFabaceae - C:alt                              NA    
## FamilyFabaceae - M:alt                              NA    
## FamilyFabaceae - P:alt                              NA    
## FamilyFagaceae:alt                                  NA    
## FamilyGentianaceae:alt                              NA    
## FamilyHeliconiaceae:alt                             NA    
## FamilyJuglandaceae:alt                              NA    
## FamilyJuncaginaceae:alt                             NA    
## FamilyLamiaceae:alt                                 NA    
## FamilyLauraceae:alt                                 NA    
## FamilyMaesaceae:alt                                 NA    
## FamilyMalvaceae:alt                                 NA    
## FamilyMelastomataceae:alt                           NA    
## FamilyMoraceae:alt                                  NA    
## FamilyMyristicaceae:alt                             NA    
## FamilyMyrsinaceae:alt                               NA    
## FamilyMyrtaceae:alt                           0.818358    
## FamilyOchnaceae:alt                                 NA    
## FamilyOnagraceae:alt                                NA    
## FamilyOrobanchaceae:alt                             NA    
## FamilyPhyllanthaceae:alt                            NA    
## FamilyPicrodendraceae:alt                           NA    
## FamilyPinaceae:alt                            0.436576    
## FamilyPoaceae:alt                             0.673346    
## FamilyPolemoniaceae:alt                             NA    
## FamilyPolygonaceae:alt                              NA    
## FamilyProteaceae:alt                          0.346160    
## FamilyRanunculaceae:alt                             NA    
## FamilyRhamnaceae:alt                                NA    
## FamilyRosaceae:alt                                  NA    
## FamilyRubiaceae:alt                                 NA    
## FamilyRutaceae:alt                                  NA    
## FamilySalicaceae:alt                                NA    
## FamilySapindaceae:alt                               NA    
## FamilySapotaceae:alt                                NA    
## FamilyScrophulariaceae:alt                          NA    
## FamilyThymelaeaceae:alt                             NA    
## FamilyUlmaceae:alt                                  NA    
## FamilyUrticaceae:alt                                NA    
## FamilyViolaceae:alt                                 NA    
## FamilyXanthorrhoeaceae:alt                          NA    
## FamilyZygophyllaceae:alt                            NA    
## FamilyAsteraceae:temp                         0.004264 ** 
## FamilyAtherospermataceae:temp                       NA    
## FamilyBalsaminaceae:temp                            NA    
## FamilyBetulaceae:temp                               NA    
## FamilyBrassicaceae:temp                             NA    
## FamilyCactaceae:temp                                NA    
## FamilyCasuarinaceae:temp                            NA    
## FamilyChloranthaceae:temp                           NA    
## FamilyChrysobalanaceae:temp                         NA    
## FamilyCistaceae:temp                                NA    
## FamilyCornaceae:temp                                NA    
## FamilyCrassulaceae:temp                             NA    
## FamilyCunoniaceae:temp                              NA    
## FamilyCupressaceae:temp                             NA    
## FamilyCyperaceae:temp                               NA    
## FamilyDennstaedtiaceae:temp                         NA    
## FamilyDicksoniaceae:temp                            NA    
## FamilyDipterocarpaceae:temp                         NA    
## FamilyEbenaceae:temp                                NA    
## FamilyElaeocarpaceae:temp                           NA    
## FamilyEricaceae:temp                                NA    
## FamilyEuphorbiaceae:temp                            NA    
## FamilyFabaceae - C:temp                             NA    
## FamilyFabaceae - M:temp                             NA    
## FamilyFabaceae - P:temp                             NA    
## FamilyFagaceae:temp                                 NA    
## FamilyGentianaceae:temp                             NA    
## FamilyHeliconiaceae:temp                            NA    
## FamilyJuglandaceae:temp                             NA    
## FamilyJuncaginaceae:temp                            NA    
## FamilyLamiaceae:temp                                NA    
## FamilyLauraceae:temp                                NA    
## FamilyMaesaceae:temp                                NA    
## FamilyMalvaceae:temp                                NA    
## FamilyMelastomataceae:temp                          NA    
## FamilyMoraceae:temp                                 NA    
## FamilyMyristicaceae:temp                            NA    
## FamilyMyrsinaceae:temp                              NA    
## FamilyMyrtaceae:temp                          0.008481 ** 
## FamilyOchnaceae:temp                                NA    
## FamilyOnagraceae:temp                               NA    
## FamilyOrobanchaceae:temp                            NA    
## FamilyPhyllanthaceae:temp                           NA    
## FamilyPicrodendraceae:temp                          NA    
## FamilyPinaceae:temp                                 NA    
## FamilyPoaceae:temp                            0.042787 *  
## FamilyPolemoniaceae:temp                            NA    
## FamilyPolygonaceae:temp                             NA    
## FamilyProteaceae:temp                               NA    
## FamilyRanunculaceae:temp                            NA    
## FamilyRhamnaceae:temp                               NA    
## FamilyRosaceae:temp                                 NA    
## FamilyRubiaceae:temp                                NA    
## FamilyRutaceae:temp                                 NA    
## FamilySalicaceae:temp                               NA    
## FamilySapindaceae:temp                              NA    
## FamilySapotaceae:temp                               NA    
## FamilyScrophulariaceae:temp                         NA    
## FamilyThymelaeaceae:temp                            NA    
## FamilyUlmaceae:temp                                 NA    
## FamilyUrticaceae:temp                               NA    
## FamilyViolaceae:temp                                NA    
## FamilyXanthorrhoeaceae:temp                         NA    
## FamilyZygophyllaceae:temp                           NA    
## lat:long                                      0.165174    
## lat:temp                                      0.000384 ***
## lat:NPP                                       0.376311    
## long:alt                                      0.555973    
## long:temp                                     0.016734 *  
## long:NPP                                      0.015356 *  
## alt:temp                                      0.006587 ** 
## temp:NPP                                      0.069341 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.14 on 10 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.9981, Adjusted R-squared:  0.9695 
## F-statistic: 34.87 on 152 and 10 DF,  p-value: 5.06e-07

R2 = 0.99 … very high. In general, AIC should not overfit. In practice, however, it can overfit if there are unmodelled correlation in the data, or if you use variables that are (indirectly) identical to your response.



3.4.2 Case study: Life satisfaction

The following data set contains information about life satisfaction (lebensz_org) in Germany, based on the socio-economic panel.

library(EcoData)
?soep

Task

Perform a causal analysis of the effect of income on life satisfaction, considering possible confounding / mediation / colliders.

Solution

  • Nearly all other variables are confounders, gesund_org could als be a collider
  • Might consider splitting data into single households, families, as effects could be very different. Alternatively, could add interactions with single, families and / or time to see if effects of income are different

A possible simple model is

fit <- lm(lebensz_org ~ sqrt(einkommenj1) + syear + sex + alter + anz_pers + bildung + erwerb + gesund_org, data = soep)
summary(fit)
## 
## Call:
## lm(formula = lebensz_org ~ sqrt(einkommenj1) + syear + sex + 
##     alter + anz_pers + bildung + erwerb + gesund_org, data = soep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7735 -0.7843  0.0966  0.9387  4.9146 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.257e+01  1.443e+01  -2.256 0.024072 *  
## sqrt(einkommenj1)  4.741e-04  1.661e-04   2.855 0.004307 ** 
## syear              2.032e-02  7.158e-03   2.838 0.004541 ** 
## sex                6.830e-02  2.073e-02   3.296 0.000984 ***
## alter              1.272e-02  7.116e-04  17.882  < 2e-16 ***
## anz_pers           7.040e-02  7.753e-03   9.081  < 2e-16 ***
## bildung            2.027e-02  3.762e-03   5.387 7.23e-08 ***
## erwerb            -1.267e-02  8.762e-03  -1.446 0.148277    
## gesund_org        -8.283e-01  1.139e-02 -72.728  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.479 on 21611 degrees of freedom
##   (1902 observations deleted due to missingness)
## Multiple R-squared:  0.2172, Adjusted R-squared:  0.2169 
## F-statistic: 749.6 on 8 and 21611 DF,  p-value: < 2.2e-16

Note that you shouldn’t interpret the other variables (Table II fallacy) in a causal analysis, because the other variables aren’t analyzed / corrected for confounding.